Factor Intensity, Product Switching, and Productivity: Evidence from Chinese Exporters*

Yue Ma†
Lingnan University

Heiwai Tang‡
Tufts University and MIT Sloan

Yifan Zhang§
Lingnan University

September 26, 2011
Comments are welcome

Abstract

This paper analyzes the causal relations between firms’ productivity, factor intensity, and export participation. In particular, it provides empirical evidence on how firms’ specialization in core competence after exporting can contribute to higher measured productivity. Using propensity score matching techniques and firm-level panel data for Chinese manufacturing firms over the 1998-2007 period, we find strong evidence of domestic manufacturing firms self-selecting into export markets with higher productivity ex ante, and enhanced productivity ex post. No such pattern is observed among foreign-invested enterprises. Both domestic and foreign new exporters exploit China’s low labor costs and specialize in their core competence, that is, firms become less capital-intensive after exporting, relative to the matched non-exporting counterparts in the same industry. To rationalize these results that contrast with most findings in the existing literature, we develop a variant of the multi-product model of Bernard, Redding, and Schott (2010) to consider varying capital intensity across products. Using transaction-level export data, we find evidence that Chinese exporters add new products that are more labor-intensive than existing products and drop products that are less labor-intensive, supporting the model predictions. Firms with a bigger decline in capital intensity after exporting are found to have a larger increase in measured productivity.

Key Words Exporters, Productivity, Factor Intensity, Multi-product Firms, Margins of Trade

JEL Classification Numbers: F11, L16, O53

*We would like to thank Daniel Berkowitz, Loren Brandt, Simon Fan, Ying Fang, Chang-Tai Hsieh, Amit Khandelwal, Steven Klepper, Alexis Leon, Soiliou Namoro, Albert Park, Thomas Rawski, Jo Van Biesebroeck and participants at the China Economic Summer Institute 2011 for their helpful comments and discussions. The authors gratefully acknowledge funding from Competitive Earmarked Research Grant (LU3409/06H) of the RGC of HKSAR Government and Direct Allocation Grant of Lingnan University (funding # DR07B4). The usual disclaimer applies.
†yuema@ln.edu.hk.
‡heiwai.tang@tufts.edu.
§yifan.zhang@ln.edu.hk.
1 Introduction

A growing body of research has documented the superior performance of exporters relative to non-exporters. Exporters are found to be larger, more capital-intensive, more technologically advanced, and pay higher wages (e.g., Bernard and Jensen, 1999). These findings have important implications for trade and development policies. Theories suggest that at least three mechanisms could explain such correlation between exporting and firm performance. The first relates to self-selection (e.g., Clerides, Lach, and Tybout, 1998; Bernard, Eaton, Jensen, and Kortum, 2003; Melitz, 2003): only the best firms engage in international trade. The second explanation is “learning-by-exporting” (e.g., Van Biesebroeck, 2005; De Loecker, 2007): after firms enter the export markets, they gain new knowledge and expertise that improve their productivity. The third explanation relates to exporters’ optimizing product scope to specialize in their core competence (Feenstra and Ma, 2008; Nocke and Yeaple, 2008; Carsten and Neary, 2010; Bernard, Jensen, and Schott, forthcoming). Whereas various empirical studies have confirmed the self-selection theory, existing findings are mixed for the “learning by exporting” phenomenon, and are relatively silent about the “core-competence” hypothesis.

In this paper, we provide empirical evidence for all three channels, with an emphasis on the “core-competence” hypothesis that has received little attention in the empirical literature. In particular, we empirically explore an unexplored channel through which changes in factor intensity, due to within-firm reallocation of resources across products, can contribute to an increase in firm measured productivity after trade. To this end, we use a large panel data set on China’s manufacturing firms over the 1998-2007 period, and employ the matched sampling techniques from the program evaluation literature for identification (i.e., Heckman, Ichimura, and Todd, 1997 and the subsequent studies). Using these techniques, we can construct a counterfactual control sample of non-exporters and evaluate the causal impact of exporting on firm productivity and factor intensity.

Using matching estimators, we find that export participation increases a firm’s measured total factor productivity (TFP) in the year when it starts exporting. We also find that more productive firms are more likely to start exporting. These results add to the literature that reports a positive correlation between firm productivity and export participation. However, once we take out domestic firms from the sample and focus only on foreign-invested enterprises (FIEs), new exporters do not show any significant improvement in TFP compared to the matched non-exporters. A reason is that since FIEs are much closer to the world technology frontier and already have experience selling abroad, there is much less potential for FIEs to learn by exporting. These findings also lend support to the productivity-sorting prediction by Helpman, Melitz, and Yeaple (2004), who show that only the most productive firms engage in foreign direct investment.
Importantly, we find that within a narrow industry, exporters are less capital-intensive than non-exporters in China, contrasting with the existing findings (Bernard and Jensen, 1999; Bernard, Jensen, and Schott, 2007; De Loecker, 2007; Van Biesebroeck, 2005, among others). We find that ex-ante more labor-intensive firms are more likely to start exporting. Using matching estimators, we find that a firm becomes less capital-intensive in the year it starts exporting, with capital intensity declining further in subsequent years relative to the matched non-exporters. These patterns are observed for both domestic and foreign firms. We conduct a host of robustness checks, employ different matching techniques, and use several measures of capital intensity to confirm these results. Our results suggest that exporters exploit the comparative advantage of China’s labor abundance more efficiently than non-exporters, and specialize more in their core competence after exporting.

Figures 1 through 4 illustrate the main findings of the paper. They show the evolution of average capital intensity of exporters and non-exporters over our sample years (1998-2007). In Figures 1 and 3, capital stock is measured by the perpetual inventory method discussed in Brandt, Van Biesebroeck, and Zhang (2011), while in Figures 2 and 4, it is measured by the net value of fixed asset deflated by the sector’s investment price index. In all figures, exporters are persistently less capital-intensive since 2000. There is no sign that the gap is shrinking by 2007, the last year in our sample.

Of note, although our results appear to contradict the existing literature at first sight, they actually provide “mirror image” evidence supporting Bernard, Redding, and Schott (2006), who find that US manufacturing firms become more capital-intensive in sectors facing more import competition from low-wage countries. We find that firms in China, a large low-wage country, exhibit the opposite pattern in capital intensity when they start exporting. In our sample period (1998-2007), China’s trade liberalization was accelerated by its entry to the WTO in 2001. Our results are consistent with Bernard, Redding, and Schott (2007) in the sense that exporters exploited China’s comparative advantage of labor abundance by further reducing the cost share of capital over time. These findings have important implications for understanding the impact of trade on the factor markets of China and its trade partners. For instance, one important question in the trade literature is whether Chinese exporters increase their capital content of exports and compete more directly with firms in developed countries. Our findings show that this trend has not been obvious by 2007, the last year in our sample.

It is worth noting that the findings about the relation between firm capital intensity and export participation cannot be explained by the Hecksher-Ohlin model, as differences in capital intensity are found across firms within a disaggregated manufacturing industry. To rationalize the findings that firms become increasingly labor-intensive after exporting, we develop a variant of the multi-
product model of Bernard, Redding, and Schott (2010) (BRS hereafter) to consider both capital and labor as factors of production. In the model, heterogeneous firms can potentially produce a continuum of products, for which production differs in capital intensity. In addition to firm heterogeneity in productivity (“ability”) as in Melitz (2003), a firm’s profitability of selling a product in a foreign market depends on a random draw of a firm-product-specific “consumer taste” attribute. On top of the country-specific fixed export cost, for each product produced an exporter needs to incur extra fixed costs (e.g. R&D expenditure to produce a blue print or overhead costs to manage a product-specific sales force). Firms add and drop products continuously due to “consumer taste” shocks. When the shock falls below the firm-product-specific zero-profit threshold, the firm would drop the product from its product portfolio; if the shock is above the threshold, the firm would keep the existing product or add a new product to its portfolio. Thus, when a favorable productivity shock triggers a firm to start exporting to a capital-abundant country, the firm would specialize in its core competence – the labor-intensive products, which are associated with relatively lower zero-profit thresholds due to China’s labor abundance. As such, the exporter would become more labor-intensive either by expanding sales of existing labor-intensive products (the intensive margin) or adding the more labor-intensive products (the extensive margin). Given short-run adjustment costs, exporters would also become more labor-intensive over time before the optimal product portfolio is attained.

To empirically verify the proposed mechanism on how trade increases exporters’ labor intensity in a developing country, we use transaction-level data that cover the universe of Chinese exports. We find evidence that products added by exporters in subsequent years of trade are on average more labor-intensive than the previously exported products, while products dropped are less labor-intensive.

Our model also sheds light on how changes in a firm’s product scope would affect the firm’s measured productivity. In particular, firms that have a larger reallocation of resources from capital-intensive to labor-intensive products after exporting should have a bigger increase in measured productivity. The theoretical explanation is that given fixed export costs and firm productivity, an increase in sales of labor-intensive products imply a larger scope of increasing returns, relative to capital-intensive products. Using transaction-level data, we find evidence that new exporters with a larger increase in labor intensity after exporting have a bigger gain in measured productivity. These findings provide a new angle to interpret the impact of exporting on firm productivity.

The rest of the paper is organized as follows. Section 2 provides a brief literature review. Section 3 describes our data source. Section 4 explores the basic patterns of export participation, technology, and capital intensity. Section 5 examines the impacts of exporting on new exporters,
with a focus on capital intensity. Section 6 presents a theoretical model to rationalize our findings. Sections 7 and 8 examine the specific theoretical predictions using transaction-level trade data. The last section concludes.

2 Relation to the Literature

With the increasing availability of firm-level data, it has been widely documented that exporters are more productive, larger, survive longer, and pay higher wages, compared with non-exporters (e.g. Bernard and Jensen, 1999; Bernard et al., 2007). As we discussed at the beginning of the introduction, the existing literature has focused on three causal channels through which firm productivity and exporting are related: 1) self-selection, 2) “learning by exporting”, and 3) product scope (re)optimization. Our study provides evidence for all three channels, with an emphasis on the last one that has received little attention in the empirical literature.

The self-selection theory stresses the significance of sunk entry costs. The seminal work by Bernard, Eaton, Jensen, and Kortum (2003) and Melitz (2003) show how trade barriers deter the less productive firms from selling abroad, letting only the most productive firms serving the foreign markets. The learning-by-exporting theory focuses on the reverse causal impact of exporting instead and postulates that exporters can learn from the foreign buyers about product designs and advanced production technology, especially those in less-developed economies (World Bank, 1993; De Loecker, 2007). Firm-level empirical studies find strong evidence for self-selection, but mixed results for learning-by-exporting. Clerides, Lach, and Tybout (1998) and Bernard and Jensen (1999) are among the first studies to empirically distinguish the causal impact of exporting on productivity and self-selection into exporting. They find evidence that exporters have higher productivity than non-exporters before exporting but not after.\footnote{Clerides, Lach, and Tybout (1998) use firm-level from Colombia, Mexico, and Morocco for their study; while Bernard and Jensen (1999) use firm-level data from the U.S. Aw, Chung, and Roberts (2000) and Delgado, Farinas, and Ruano (2002) come to the same conclusions for Taiwan, Korea, and Spain.}

On the other hand, recent studies find supporting evidence for the learning-by-exporting theory.\footnote{These studies include Wagner (2002) for Germany; Girma, Greenway, and Kneller (2003) for the United Kingdom; Alvarez and Lopez (2005) for Chile; Van Biesebroek (2005) for sub-Saharan African countries; and De Loecker (2007) for Slovenia. A more recent study by a group of economists (International Study Group on Exports and Productivity, 2007) uses comparable firm panel data for 14 countries and an identical method to investigate the relationship between exports and productivity. They find strong evidence of self-selection but no evidence of learning-by-exporting.}

Among others, Lileeva and Trefler (2010) use the elimination of the U.S. tariffs as an instrument to predict Canadian firms’ entry into the U.S. market, and show that access to foreign markets enhances labor productivity and technology adoption for the less productive firms. Specific to China, Kraay (1999) finds that exporters are more productive than non-exporters based on a survey data set of 2105 firms. Park et al. (2007) use exposure to
the 1997 Asian financial crisis as an instrument and find that exports causally raises productivity of Chinese firms that export to developed countries.

Recent theoretical work has started using a multi-product firm framework to examine how specialization in core competence can enhance firm productivity after exporting. A common feature in these models postulates that diversification across products is costly, and access to foreign markets provides an opportunity for firms to specialize in a narrower product scope. In this literature, Feenstra and Ma (2008) study how trade liberalization reduces firms’ product scope due to the presence of cannibalization effects. Nocke and Yeaple (2008) study the implications when a firm’s marginal cost of production rises in product scope due to managers’ limited span of control as in Lucas (1978). Eckel and Neary (2010) examine theoretically how exports can enhance firm productivity when multi-product firms specialize in their core competence, taking advantage of the larger market size. In their model, each firm has a core-competence product that is associated with the lowest marginal cost. Producing a product farther away from the firm’s core competence is more costly. Based on a multi-product extension of Melitz (2003), Bernard, Jensen, and Schott (forthcoming) show theoretically that trade liberalization would result in both within and across-firm reallocation of resources, leading to growth in both firm and aggregate productivity. The added multi-product dimension permits firms to drop products that are less appealing to the consumers and add those that are more appealing upon trade liberalization. Product churning thus results in higher firm productivity. To the best of our knowledge, we are one of the first to provide empirical evidence on how product specialization by a multi-product firm can enhance firm productivity. Moreover, we extend the existing multi-product framework that largely focuses on a single factor of production to consider both capital and labor as inputs, and postulate how specialization in labor-intensive products (core competence for developing countries’ firms) can explain the observed productivity gain from trade.\(^3\)

3 Data

The firm-level data for our analysis are from the annual surveys of industrial firms conducted by China’s National Bureau of Statistics (NBS) for the 1998-2007 period. The surveys cover all state-owned firms and all non-state-owned firms with sales above 5 million yuan.\(^4\) The industry

\(^3\)In the appendix of Bernard, Redding, and Schott (2010), the authors extend the baseline model to consider two factors of production. They further show how endogenous product choices upon export participation affect firm measured productivity. They did not, however explicitly solve for how relative factor endowment of the exporting country can serve as a source of within-firm comparative advantage. Our later discussion on specialization in core competence and productivity gains are developed on their argument.

\(^4\)The unit of analysis is a firm, and not the plant, but other information in the survey suggests that more than 95% of all observations in our sample are single-plant firms.
section in China’s Statistical Yearbooks is compiled based on this data set. The data set contains detailed information for about 100 variables, including firm ID, address, ownership, output, value added, four-digit industry code, six-digit geographic code, exports, employment, capital stock, and intermediate inputs. The firms in our sample account for 57% of total industrial value added in 1998 and 94% in 2007. Since we focus on manufacturing, mining and utility industries are excluded from our sample. Moreover, we delete observations with missing values for key variables and those that fail to satisfy some basic error checks.\(^5\) The cleaned data set provides an unbalanced panel of firms that increases in coverage from 148,685 firms in 1998 to 313,048 in 2007.

A firm’s real value added is measured as nominal value added deflated by an industry-specific ex-factory price index. A firm’s capital intensity is defined as the real value of capital stock per worker. As an attempt to adjust for the quality of the workers, we also use total wage bill instead of employment to compute an alternative measure of capital intensity. Our main measure of capital stock is calculated using the perpetual inventory method described in detail in Brandt, Van Biesebroeck, and Zhang (2011). We also use the net value of fixed assets deflated by industry-level investment price index as an alternative measure. The deflators of output and capital stock are calculated based on the price information in China’s Statistical Yearbooks (2006). Construction of other key variables, e.g., gross output, value added, employment and wages, is standard (see Brandt, Van Biesebroeck, and Zhang (forthcoming) for details).

We use unique numerical IDs to link firms in the sample over time. Firms occasionally receive a new ID as a result of restructuring, merger, or acquisition. Where possible, we aim to track firms as their boundaries or ownership structures change, using information on the firm’s name, industry, address, etc., to link them.\(^6\) These other matches are still important as one-sixth of all firms that are observed for more than one year experience a change in their official ID over the period of analysis.

In this paper, a non-exporter is a firm that never exported up to and including the reporting year. New exporters are firms that did not export in the previous years but started exporting in the year of analysis. Their pre-export characteristics can therefore be matched with those of the non-exporting firms (see section 5 for details about the matching approach). Existing exporters are firms that have export records in previous years, or firms that start exporting already in their first

\(^5\) Some firms have missing observations for variables needed to calculate productivity. This arises either because the information was not originally reported, or because of negative values for variables such as the real capital stock or value added. We drop all firms with less than 8 employees as they fell under a different legal regime. As a result, 17% of firms in the original data set are dropped from the sample in 1998, but the fraction drops to 6% in each year after 2001.

\(^6\) The fraction of firms in a year that can be linked to a firm in the previous year increases over time from 84.5% in the first two years (1998-1999) to 92.2% in the final two years (2006-2007). Overall, 95.9% of all year-to-year matches are constructed using firm IDs, and 4.1% using other information on the firm.
year of entry (since matching this group of firms with pre-export characteristics is not possible, it is excluded from our analysis).

In the later part of the paper, we also use transaction-level data that cover the universe of all Chinese exporters and importers over 2000-2006 for analysis. The trade data set provides information on import and export values, quantities, and prices between China and over 200 destination countries at the HS 6-digit level for each trading firm, by type of enterprise (out of 9 types, e.g. state owned, foreign invested, Sino-foreign joint ventures), and customs regime (e.g. “Processing and Assembling” and “Processing with Imported Materials”).\(^7\) The purpose of using this data set is to study product churning and within-firm dynamics after a firm starts exporting. To identify new exporters in the trade data set, we merge the NBS firm survey data with the transaction-level trade data based on firm names.\(^8\) Statistics about the merging are reported in Appendix Table A5. We use the merged data set to compute the measures of capital intensity at the product level (HS 6-digit). To the best of our knowledge, we are the first to do it for China.\(^9\) Details about the steps to compute the product-level capital intensities are provided in Appendix A.4.

4 Basic Patterns

Table 1 reports the key statistics of exporters and non-exporters in China. In particular, it reports the distribution of new exporters, continuing exporters, and non-exporters for domestic and foreign firms respectively, over the period of 1999-2007. In the pooled sample, there are about 35 thousands export starters and over a million non-exporters among domestic firms, and about 17 thousands export starters and over 130 thousands non-exporters among foreign-invested enterprises (FIEs). Among domestic firms, the fraction of exporters fluctuates between 16 and 24 percent (continuing exporters and new exporters combined), which is similar to the U.S. where roughly 20 percent of plants exported in 1992 (Bernard, Eaton, Jensen, and Kortum, 2003). Notice that for China, there is a significant difference between domestic firms and FIEs in terms of the prevalence of exporters. Foreign firms overwhelmingly engage in exporting, with the fraction of exporters ranging between 63 percent (in 1999) and 72 percent (in 2004). Our data span 1998-2007, giving us nine cohorts of export starters and non-exporters: 1998-1999, 1999-2000, \ldots, 2006-2007.

Table 1 also presents the pattern of export intensity of new exporters, the focus of this study.

\(^7\)The data also report quantity, quantity units, customs offices (ports) where the transaction was processed (97 in total), and transportation modes.

\(^8\)Depending on the year, 37-48\% of export value in the trade data set is successfully merged to the NBS firm data set. 70\% of exporters in NBS is merged.

\(^9\)Bernard et al. (2010) compute the measures of factor intensity at the SIC 5-digit level for the US, and find substantial within-sector (2-digit) heterogeneity in capital and skill intensity.
Similar to the U.S. firms, over 80 percent of domestic new exporters also sell domestically in China; and about half of the domestic new exporters sell less than 10 percent of their products abroad. However, there is a significant fraction of new exporters that have over 90% of their revenue derived from export markets (e.g. up to 30 percent of the foreign new exporters in 2004). One reason for the large share of the so-called “pure exporters” is due to the prevalence of processing trade in China (see Feenstra and Hanson, 2005 for a detailed description of this type of exporters). Registered processing firms in China are entitled to receive value-added tax rebates and import tariff exemptions for production aiming for exports. These export-promotion incentives and the registration requirement explain in part why there are significantly more pure exporters in China than other countries.

Before discussing our main empirical strategy and results, we explore some basic patterns about exporters and non-exporters. To this end, we estimate the following specification:

$$\ln S_i = \beta E_i + \gamma_0 + F_{Ind} + F_{Prov} + F_{Year} + \varepsilon_i$$

where S_i can be firm i’s TFP or capital intensity. To deal with the biases arising from endogenous input choices (Griliches and Mairesse, 1998) and firm exits, we adopt the Levinsohn and Petrin (2003) procedure to take into account firms’ exits and use intermediate inputs as a proxy for unobservable productivity shocks.10 For reasons that will become clear below, exporters and non-exporters can have different factor intensity of production within a disaggregated sector. We thus assume different sector-specific production functions for exporters and non-exporters respectively to estimate firm productivity.11 E_i is a dummy variable indicating the firm’s export status. We control for industry (F_{Ind}), province (F_{Prov}), and year (F_{Year}) fixed effects; γ_0 is a constant and ε_i is the error term. The percentage differential in S_i between new exporters and non-exporting firms can be calculated from the estimated coefficient as $100 \times (\exp(\beta) - 1)$.

Panel A in Table 2 shows that exporters (new and continuing exporters combined) are associated with a higher TFP. According to the results in column (2), exporters are about 9 percent more productive than non-exporters on average within a 4-digit industry (over 480 industries) and an ownership type (such as domestic private, foreign, state, or collectively-owned). In columns (3) and (4), we find that the productivity premium of exporters is mostly determined by the productivity

10Olley and Pakes (1996) propose a semi-parametric estimation procedure to take into account both sources of endogeneity biases. However, the Olley-Pakes procedure requires investment information, which is often missing in developing countries’ data sets.

11In the original version of the paper, we extend the Levinsohn-Petrin procedure by incorporating the firm’s export decision into the productivity estimation procedure to control for the export endogeneity problem (Van Biesebroeck, 2005; De Loecker, 2007), instead of estimating productivity using separate production functions for exporters and non-exporters, respectively. The results obtained were quantitatively similar.
variation among domestic private firms. Foreign exporters do not appear to be more productive than foreign non-exporters. In column (4), we show that even among state-owned enterprises (SOEs), for which soft-budget constraints and measurement errors may mask the true measures of productivity and other characteristics, exporters appear to be more productive. By splitting the sample into the pre-WTO period (1999-2001) and the post-WTO period (2002-2007), column (6) and (7) show that the TFP premium of exporters is larger before China’s accession to the WTO than after (decreased from 0.13 to 0.07 log points). These results on the productivity gap for domestic firms are consistent with most of the findings in the existing literature. Our findings that foreign exporters exhibit no superior productivity echo the findings by Baldwin and Gu (2003), who also find no productivity premium among foreign exporters in Canada. Their explanation is that the potential for foreign firms to learn from selling abroad is limited. Our findings lend support to the productivity-sorting prediction by Helpman, Melitz, and Yeaple (2004), who show theoretically that only the most productive firms engage in foreign direct investment.

Next, we present preliminary results on the gap in capital intensity between exporters and non-exporters. Existing studies consistently find that exporters are more capital-intensive (e.g., De Loecker (2007) for Slovenia, Bernard and Jensen (1995) for the US, Bernard and Wagner (1997) for Germany, Isgut (2001) for Columbia, and Van Biesebroeck (2005) for Sub-Saharan Africa). In sharp contrast, we find that exporters in China are less capital-intensive than non-exporters, as is shown in Table 2. Specifically, in Panel B when capital intensity is measured as the ratio of real capital stock to employment (our preferred measure that is computed based on the perpetual inventory method proposed by Brandt et al., 2011), we find that exporters are about 4 percent less capital-intensive than non-exporters within a four-digit industry (column (2)). Notice that this difference in capital intensity is larger among domestic private firms than among foreign firms (columns (3) and (4)).

When a firm’s real capital stock is measured as the average net value of fixed assets deflated by the industry-specific investment price index (Panel C), or when capital intensity is measured using a firm’s total wage bill instead of employment as the denominator (Panel D), exporters still appear to be less capital-intensive than non-exporters. The capital intensity gap is significantly larger when the latter measure is used. A possible reason is that using total wage bill to compute capital intensity partially adjusts for the quality of the firm’s workforce. To the extent that exporters employ workers who are more skilled than non-exporters and thus pay higher wages, as evidenced by the existing literature, capital intensity will be even lower for exporters when it is measured by effective labor units. To conserve space, we focus on the results based on capital intensity measured by the perpetual inventory method (i.e., the Panel B measure) below. Since using the wage-bill-
based capital intensity measure tends to give us a wider capital intensity gap between exporters and non-exporters, the results below can be considered as a lower bound of the capital intensity change after exporting.

The results in column (5) suggest that the capital intensity gap between exporters and non-exporters is not driven by a potentially different accounting standard to measure capital by the state-owned enterprises (SOEs). Columns (6) and (7) show that the capital intensity disparity is widened after China’s accession to the WTO. Appendix Table A1 shows that the strong pattern is observed in each sample year.

Given China’s comparative advantage in labor-intensive goods, it may not seem surprising that exporters in China are less capital-intensive than non-exporters at first sight. However, since this pattern is found within disaggregated industries at the 4-digit level (about 480 industries), the standard factor-proportions theory of trade that emphasizes between-sector reallocation of resources cannot be used to explain within-industry heterogeneity in factor intensity. Given the novelty of these findings, we will devote relatively more attention to explaining this pattern in the rest of the paper. We will also discuss the implications on interpreting the impact of exporting on measured productivity. A theoretical model will be developed in Section 6 to rationalize the findings.

4.1 Self-selection into Export Markets

The findings reported in Table 2 say little about whether exporting improves firms’ performance or lowers their capital intensity. An alternative hypothesis is that the more productive or more labor-intensive firms self-select into exporting. In Appendix Table A3, we estimate the probability of exporting as a function of ex-ante firm performance, labor intensity, and other firm attributes commonly examined in the literature. We find that the more productive and more labor-intensive domestic firms are more likely to start exporting. Among foreign-invested firms, ex-ante firm productivity or labor intensity once again does not appear to determine export participation.

5 Impact of Exporting on New Exporters

To identify the causal impact of exporting on exporters’ outcomes, we apply a matching estimator developed by Rosenbaum and Rubin (1984) and populated by Heckman, Ichimura, and Todd (1997), among others, in the “program evaluation” literature (see Appendix A.1 for details). The goal, as in a typical program evaluation, is to examine the average treatment effect on the treated. Here, we...
consider exporting as a treatment. We define the treated as the export starters and the untreated as the firms that never export in the sample. Formally, we estimate the average effect of exporting on the export starters in a given year as follows:

$$E \left[S_1^i - S_0^i | Start_i = 1 \right] = E \left[S_1^i | Start_i = 1 \right] - E \left[S_0^i | Start_i = 1 \right],$$

where the superscript denotes the export status. The challenge is that the counterfactual outcome if the exporter did not export, S_0^i, is not observable. To this end, we first separate the sample into two groups, with one group containing observations of firms that never export in the sample (the untreated group), and another group containing observations of all export starters (the treated group). We then match the treated and the untreated observations based on observable pre-export characteristics. The goal is to ensure that the untreated group shares firm attributes as close as possible to the matched treated group. To this end, we match the two groups based on propensity scores obtained from a Probit model of export participation. Among many matching estimators, we choose the difference-in-difference (DID) matching estimator for our baseline analysis. Other matching estimators will be used to check the robustness of the results.

Since the same firm attribute (e.g. capital intensity) may affect the likelihood of exporting differently depending on ownership types or industries, we first divide firms into individual cells according to their ownership (domestic or foreign), reporting year, and industries. Then within each cell, we estimate the propensity score of each firm by a Probit model conditional on a vector of pre-export firm characteristics, which include TFP, capital intensity, firm age, sales, average wages, and province dummies. The results of the estimation are reported in Appendix Table A2. Finally, local linear regression weights are constructed to match new exporters and never-exporters in each cell. See Appendix A.1 for the detailed procedures of implementing the DID matching estimator.

Using the matched sampling techniques, differences in TFP and factor intensity between the treated firms and the matched untreated firms can then be inferred as an outcome of exporting. Previous studies have used the matching approach to search for causal effects of exporting on productivity, such as Wagner (2002), Girma, Greenaway, and Kneller (2003), Alvarez and Lopez (2005), Konings and Vandenbussche (2005), and De Locker (2007). Since the productivity effects of exporting have been well studied, we focus on the causal impact of exporting on capital intensity instead. To our understanding, we are the first to examine such a causal impact using the matching techniques.
5.1 Impact of Exporting on Firm Productivity

In Table 3, we present the estimation results to examine the “learning by exporting” effects, using three different matching estimators. Using the DID matching estimator in Panel A, we find a positive and significant effect of exporting on the firm’s TFP in the first year of exporting in the full sample (column (1)). In particular, export participation leads to about a 7-percent increase in productivity in the first year of exporting. Similar to the correlation results reported in Table 2, we find that the productivity differential is driven by the differences among domestic firms (private or SOEs), but not among foreign firms. As we already discussed in the previous section, with foreign experience and know-how, there can be little room for foreign exporters to learn by exporting. Using the local linear regression matching estimator (Fan, 1993) in Panel B and the nearest neighbor matching estimator in Panel C, we continue to observe the same pattern. Notice that the productivity effect is particularly significant for domestic private firms (column (2)). Columns (5) and (6) show no systematic pattern on how the TFP effect of exporting changes after China’s accession to the WTO.

5.2 Impact of Exporting on Capital Intensity

Table 4 reports the estimation results for the causal impact of exporting on capital intensity. Using the DID estimator, we find that new exporters become less capital-intensive after exporting. In particular, new exporters are 0.061 log-point less capital-intensive compared to the matched firms that never export in our sample. These exporting effects are quantitatively similar for both domestic and foreign firms, though statistically less significant for the latter (columns (2) and (3)). A similar pattern is found among state-owned enterprises, for which measurement of capital could be an issue. The quantitative impact is similar before and after China’s accession to the WTO (columns (5) and (6)). The results remain robust when we measure capital stock by the net real value of fixed assets (column (7)) or by dividing real capital stock by the firm’s wage bill instead of employment (column (8)).

We also employ two other matching methods to check the robustness of the results about capital intensity. In Panel B, we use the local linear regression matching estimator for estimation, while in Panel C, we use the nearest neighbor matching estimator. The estimates remain quantitatively similar and statistically significant for most cases. In sum, regardless of matching methods, ownership types, sample periods, and measures of capital intensity, we find that export participation lowers capital intensity of the firm, relative to the non-exporters that share similar ex-ante firm attributes.

These estimation results so far compare only the average capital intensity of new exporters
with that of non-exporters. Next, we compare the entire distribution of capital intensity of the two groups of firms by conducting the Kolmogorov-Smirnov stochastic dominance test. The null hypothesis is that new exporters and non-exporters have the same capital intensity. The alternative hypothesis is that one group of firms are stochastically more capital-intensive.\footnote{The testing procedure is discussed in detail in Delgado, Farinas, and Ruano (2002) and Gibbons and Chakraborti (2003, p.244).} As is reported in Appendix Table A4, the capital intensity of new exporters is stochastically dominated by that of non-exporters, for both domestic and foreign firms. These results remain significant (at the 1% level) in each sample year and in the pooled sample.

One may wonder whether the exporting effects on an exporter’s capital intensity are long-lasting. It is possible that Chinese exporters test the foreign market by exporting labor-intensive products, but subsequently export more capital-intensive products that they have been selling at home. To analyze whether there are lasting effects on an exporter’s capital intensity, we use the DID matching estimator to compare the capital intensity of exporters and the matched non-exporters \(n\) years after exporting, where \(1 \leq n \leq 8\). Results are reported in Table 5. As is shown, all estimates are negative and statistically significant, suggesting that the decrease in capital intensity of exporters in China is long lasting. Compared to non-exporters in the year of matching, new exporters (started exporting in the year right after matching) continue to be less capital-intensive \(n\) years later. For instance, the new exporters in 1999 (who did not export in 1998) were less capital-intensive than the matched non-exporters (matched in 1998) in every year between 2000 and 2007. There is also a downward trend of capital intensity for exporters relative to non-exporters over time. For instance, the capital intensity gap between the new exporters in 1999 and the matched non-exporters (matched in 1998) is 0.09 log points in 1999. The gap between the same pair of firms increases to 0.18 in 2007.

Notice that the initial non-exporters in 1999 can exit from the sample in any year between 2000 and 2007 (the last sample year). Suppose we conduct a more complicated analysis by using a balanced panel of non-exporters as our control group for matching, what would happen to the estimates? If exiters are more labor-intensive, the balanced panel of non-exporters will be on average more capital-intensive than the unbalanced panel we use. As such, the actual difference in capital intensity over time is likely to be larger if we use a balanced panel of non-exporters as the control group. In other words, our estimate serves as a lower bound of the actual capital intensity change after exporting. On the other hand, if exiters are more capital-intensive, our estimates are biased upward. This is a counter-intuitive assumption though since existing research has shown that exiters tend to be smaller and less capital-intensive.

All matching methods have their short-comings. The ultimate goal of estimating the exporting effects on firm outcomes using matching techniques is to ensure that new exporters’ ex-ante ob-
servable firm characteristics are as close to those of non-exporters as possible. Table 6 shows the balancing test results, where we compare the means of each of the observable characteristics used for matching. These variables include $\ln(\text{TFP})$, $\ln(\text{wage rate})$, $\ln(\text{sales})$, $\ln(\text{age})$, and $\ln(\text{K/L})$. Our matching procedure has passed the t-tests for equality of the means that are reported in the last two columns. Before matching, there was statistically significant difference in all matching variables between new exporters and non-exporters. For the matched firms, we cannot reject the null hypothesis that these variables are identical for new exporters and non-exporters, before the former start exporting (p-values are always significantly higher than 15 percent, a conservative statistical threshold). Table 6 also shows the standardized bias and the percentage of the reduction of such bias due to matching. The likelihood ratio test shows that the differences in means of those five variables between the treated and the untreated are jointly insignificant.

6 Theoretical Explanation

To summarize, the most surprising empirical finding in this paper is that a Chinese firm becomes less capital-intensive after exporting, more so in subsequent years. To rationalize these findings that appear to contrast with the exiting literature, we construct a variant of the model by Bernard, Redding, and Schott (2010) (BRS hereafter). In BRS, heterogeneous firms can potentially produce a continuum of multiple products. We first briefly discuss the set-up of the BRS model, and elaborate our extension in greater detail. Readers are referred to BRS (2010) for details.

Consumers consume a continuum of products with identical preferences:

$$U = \left[\int_0^1 C_s^\nu ds \right]^{\frac{1}{\nu}}$$

where $\kappa \equiv 1 / (1 - \nu) > 1$ is the elasticity of substitution between products. Within a product, firms produce horizontally differentiated varieties, facing their own demand. The consumption index for product s, C_s, takes the following form:

$$C_s = \left[\int_{\omega \in \Omega_s} (\lambda_s (\omega) c_s (\omega))^\rho \, d\omega \right]^{\frac{1}{\rho}}, 0 < \rho < 1,$$

where $\sigma \equiv 1 / (1 - \rho) > 1$ is the elasticity of substitution between varieties within a product. Following BRS, we assume that the elasticity of substitution between varieties within a product is larger than that between products ($\sigma > \kappa > 1$).

With firm heterogeneity in productivity ("ability") and fixed exporting costs as in Melitz (2003), the BRS model delivers the standard productivity-sorting results – the least productive firms exit, the intermediate-productive firms serve the domestic market, and the most productive firms serve both the domestic and foreign markets. In addition to firm heterogeneous productivity, profitability
of selling a product in a foreign market depends on an exogenous firm-product-specific attribute, called “consumer taste.” On top of country-specific fixed export costs, a multi-product exporter needs to incur a product-specific fixed cost, f_s, for each product produced.14 Firms add and drop products continuously due to exogenous changes in consumer tastes. When the consumer-taste shock for a product drops below the firm-product-specific zero-profit cutoff, the firm would drop the product from its portfolio to avoid a loss. On the other hand, if the shock is above the cutoff, the firm keeps the existing product or adds a new product to its portfolio. BRS predict that the more productive exporters have a wider product scope, all else equal, as higher firm-specific labor productivity lowers the “consumer taste” zero-profit cutoffs for all products.15

To rationalize our empirical results regarding exporters’ labor intensity, we modify the one-factor BRS model to consider two factors of production – capital and labor. Formally, firms have the following Cobb-Douglas cost function:

$$TC_s = \left[f_s + \frac{q_s}{\varphi} \right] w^{1-\beta(s)} r^{\beta(s)}, \quad (2)$$

where w and r are the wage rate and the rental rate, respectively. We choose the wage as the numeraire (i.e., $w = 1$). Notice that the fixed cost to produce a product is assumed to have the same factor shares as the variable costs. $\beta(s)$ represents capital intensity for product s. φ is the firm-specific productivity term, which is identical for all products. Without loss of generality, we rank product index $s \in [0,1]$ so that $\beta(0) = 0$, $\beta(1) = 1$, and $\beta'(s) > 0$ (i.e., capital intensity is increasing in product index s). Firm profit maximization implies the standard optimal price of a variety exported to country j as

$$p_{sj} = \frac{\sigma \tau_j}{\sigma - 1} \frac{r^{\beta(s)}}{\varphi},$$

where τ_j is the iceberg trade cost to country j. For simplicity, we assume that τ_j is identical for all products.

Consider two countries: China and destination country j. Country j (for example, the U.S.) is assumed to be relatively more capital-abundant than China. With trade frictions, factor prices would not be equalized across countries, and the wage-rental ratio in country j will be higher than that in labor-abundant China in equilibrium (i.e., $w_j/r_j > 1/r$). It can be readily shown that the relative price of product s between country j and China, $\bar{P}_j(s) = P_j(s)/P(s)$, is decreasing in capital intensity (i.e., $\bar{P}_j'(s) < 0$) (see Appendix A.2 for details).16

14Think of f_s as R&D expenditure required to produce a blue print for the product or the overhead costs to manage the product-specific sales force.

15Bernard, Redding, and Schott (forthcoming, BRS2 hereafter) show theoretically and empirically that trade liberalization leads to surviving exporters to reduce the product scope and specialize in their core competence.

16A similar point has been made by Lu (2010) to rationalize why Chinese exporters are less productive than
Given that \(\tilde{P}_j(s) \) varies across products, a Chinese new exporter (upon receiving a favorable productivity shock) serving country \(j \) will have a different export portfolio, even when its set of “consumer tastes” \((\lambda_s') \) remains the same.\(^{17}\) Consider a firm with total factor productivity \(\varphi \), the consumer taste cutoff \(\lambda_s^*(\varphi) \) for each product \(s \), above which the firm produces the product for domestic sales, can be obtained by solving the following zero-profit condition:

\[
\pi_s(\varphi, \lambda_s^*(\varphi)) = \frac{R_s}{\sigma} (\rho P(s) \varphi \lambda_s^*(\varphi))^{\sigma-1} - f_s r^\beta(s) = 0, \tag{3}
\]

where \(\pi_s(\varphi, \lambda_s^*(\varphi)) \) represents the firm’s profit by selling a variety of product \(i \) domestically; \(R_s \) stands for domestic expenditure spent on product \(s \). \(P(s) \) is the ideal price index for product \(s \).\(^{18}\) Solving (3) gives us the firm-product specific consumer taste cutoff \(\lambda_s^*(\varphi) \). Similarly, solving the zero-profit condition for export sales to country \(j \) gives the consumer taste cutoff for selling to market \(j \) as \(\lambda_{s;j}^* (\varphi) \). Conditional on drawing \(\lambda \) above \(\lambda_{s;j}^* (\varphi) \), the firm exports product \(s \) to country \(j \). See Appendix A.2 for details.

Importantly, the ratio of the firm’s export participation cutoff to domestic sales cutoff \(\tilde{\lambda}(s) = \frac{\lambda_s^* (\varphi, \tilde{P}_j(s))}{\lambda_s^*(\varphi, P(s))} \) can be solved as

\[
\tilde{\lambda}(s) = \left(\frac{P_j(s)}{P(s)} \right)^{-\gamma} \Lambda_j, \tag{4}
\]

where \(\Lambda_j = \tau_j \left(\frac{\tilde{P}_j}{P} \frac{R_j}{R} \frac{f_{s;j}}{f_s} \right)^{\frac{1}{\gamma-1}} \) is a country-specific “resistance” for exports, independent of a product’s factor intensity. Given a draw of \(\lambda \), a higher \(\tilde{\lambda}(s) \) implies a lower likelihood of exporting, conditional on positive domestic sales.

\(\Lambda_j \) is increasing in both variable (\(\tau_j \)) and fixed export costs (\(f_{s;j} \)), as well as the relative aggregate price index of country \(j \), \(\tilde{P}_j/\tilde{P} \). The reason is that a higher aggregate price index in country \(j \) lowers the purchasing power of the foreign customers, which in turn reduces the market size for product \(s \). For the same reason, \(\Lambda_j \) is decreasing in total expenditure in country \(j \), \(R_j \). Existing studies usually assume symmetry of economies (i.e., \(\tilde{P}_j = \tilde{P} \) and \(R = R_j \)), higher fixed costs for export sales than domestic sales (\(f_{s;j} > f_s \)), and an iceberg trade cost \(\tau_j > 1 \). Under these assumptions, \(\Lambda_j > 1 \). Deviating from this assumption, Bernard, Redding, and Schott (2009) and Lu (2011) postulate the domestic producers in labor-intensive sectors.

\(^{17}\) A firm decides to become a new exporter after experiencing a positive productivity shock. In BRS, there is a Poisson probability for the firm to draw firm-specific productivity term, and another Poisson probability that the firm draws a new consumer taste for a product. It is theoretically possible that a firm gets hit by a positive productivity shock and decides to export, while its product-specific consumer taste shocks do not change. Moreover, we follow BRS to assume that the distribution of abilities and consumer taste attributes are independent of one another.

\(^{18}\) Specifically, consumers’ utility maximization yields \(R_e = \int_{R} \left[P(s) \pi_s^{\gamma-1} / \int_0^1 P(k) \pi_k^{\gamma-1} \, dk \right] R \), where \(R \) is total expenditure of the economy; \(P(s) = \int_{\omega \in \Omega} P(s, \omega)^{1-\sigma} \, d\omega \).
possibility of having $\Lambda_j < 1$ and the resulting implications.\footnote{In particular, Lu (2011) finds that in labor-intensive sectors, Chinese exporters are on average less productive than non-exporters. Based on an extension of Bernard et al. (2007), she rationalizes the findings by postulating that if the domestic is more competitive than the foreign market, the domestic production cutoff can be lower than the export participation cutoff.}

If country j is relatively more capital-abundant than China, $\frac{P_s(s)}{R(s)}$ is decreasing in s. Given the assumption that $\sigma > \kappa > 1$, $\tilde{\lambda}(s)$ is thus increasing in capital intensity. That is, $\frac{\partial \tilde{\lambda}(s)}{\partial s} > 0$. In words, all else being equal, the “consumer taste” draw that guarantees profitable domestic sales is less likely to generate profitable export sales to j, the higher is the capital intensity of the product.

For a firm with productivity φ, denote capital intensity (i.e., capital cost share) for product s by $\theta_s = \frac{r k_s}{r k_s + l_s}$, where k_s and l_s are the total amounts (including fixed cost of production) of capital and labor used to produce s.\footnote{E.g. $r k_s = r k_s^p + r k_s^l$, where k_s^p stands for the level of capital used for producing goods, while k_s^l is the corresponding amount to cover the fixed cost of production, such as developing a blue print of the product.} Capital intensity of a firm with productivity φ serving only the domestic market is

$$\Theta_d(\varphi) = \int_0^1 \frac{R_s(\varphi, \lambda_s)}{R(\varphi)} \theta_s I_s(\lambda_s \geq \lambda^*_s(\varphi)) \, ds,$$

where subscript d denotes “domestic”; $I_s(\lambda_s \geq \lambda^*_s(\varphi))$ is an indicator function, which equals 1 if $\lambda_s \geq \lambda^*_s(\varphi)$, $R_s(\varphi)$ represents the firm’s product s domestic sales, whereas $R(\varphi)$ is its total domestic sales.

Condition on export participation in market j, we can derive the firm’s capital intensity of the basket of goods exported to j as

$$\Theta_j(\varphi) = \int_0^1 \frac{R_{sj}(\varphi, \lambda_s)}{R_j(\varphi)} \theta_s I_s(\lambda_s \geq \Phi_j(s) \lambda^*_s(\varphi)) \, ds,$$

where $\Phi_j(s) \equiv \tilde{P}(s)^{1 - \sigma(1 - \nu)} \Lambda_j$ is increasing in s; $R_{sj}(\varphi)$ is the firm’s product s export sales in j, and $R_j(\varphi)$ is its total sales there. We assume that θ_s is identical for product s across different markets. A firm selling both at home and country j thus has the following capital intensity:

$$\Theta_{d+j}(\varphi) = d_j(\varphi) \Theta_d(\varphi) + (1 - d_j(\varphi)) \Theta_j(\varphi), \tag{5}$$

where $d(\varphi) = \frac{R(\varphi)}{R(\varphi) + R_j(\varphi)}$. Consider a firm that receives a favorable productivity shock (i.e., $\varphi_t > \varphi_{t-1}$) so that it switches from non-exporting to exporting to country j at t. For the moment, consider sufficiently high trade costs so that all “consumer taste” cutoffs for foreign sales are higher than the corresponding ones for domestic sales, $\Phi_j(s) > 1$ or $\lambda^*_s(\varphi) > \lambda^*_s(\varphi) \forall s$.\footnote{Bernard et al. (2007) make a similar assumption. They assume that the productivity cutoffs to export are higher in both capital- and labor-intensive sectors.} Since $\frac{\partial \tilde{\lambda}(s)}{\partial s} > 0,$
the firm is more likely to draw a λ_s that is higher than both λ^*_{sj} and λ^*_s for labor-intensive (low-s) products. In other words, the firm is less likely to have λ_s that justifies capital-intensive exports (high s), even though the firm could be selling the same good at home. Given a continuum of products, the average capital intensity of the domestic product portfolio, $\Theta_d(\varphi)$, would be more labor-intensive than that of the export bundle, $\Theta_j(\varphi)$. As such, we have the following proposition:

Proposition 1 The overall capital intensity $\Theta_{d+j}(\varphi)$ after a firm’s exporting to a more capital-abundant country satisfies the following inequality:

$$\Theta_j(\varphi) < \Theta_{d+j}(\varphi) < \Theta_d(\varphi),$$

where $\Theta_d(\varphi)$ and $\Theta_j(\varphi)$ are the capital intensities of the domestic and foreign baskets of products, respectively.

This theoretical prediction is consistent with our empirical findings that firms become less capital-intensive after exporting to a capital-abundant country. Notice that this inequality does not depend on the assumption that $\lambda^*_{sj}(\varphi) > \lambda^*_s(\varphi) \forall s$. What we need for our results to go through is $\frac{\partial \lambda(s)}{\partial s} > 0$. In fact, we can follow Lu (2011) to assume that there exists $\overline{\sigma}(\varphi) < 1$ such that $\lambda^*_{sj}(\varphi) \leq \lambda^*_s(\varphi) \forall s \leq \overline{\sigma}(\varphi)$, and $\lambda^*_{sj}(\varphi) > \lambda^*_s(\varphi)$ otherwise. In Appendix A.3, we show that as long as there are some s with $\lambda^*_{sj}(\varphi) > \lambda^*_s(\varphi)$, $\frac{\partial \lambda(s)}{\partial s} > 0$ suffices to guarantee a decline in capital intensity of a new exporter serving j.

According to our model, new exporters in labor-abundant countries exporting to capital-abundant countries will experience at least one of the following changes. First, it will experience a larger sales increase in labor-intensive (low-s) products after exporting (the intensive margin). Second, the firm may not produce the same product for the domestic market if the corresponding domestic “customer taste” is higher than the one for exporting. In fact, if $\lambda^*_s(\varphi) > \lambda_s > \lambda^*_{sj}(\varphi)$ (because of less competitive product market in country j), the exporter may find it profitable to add product s to the export portfolio to country j (the extensive margin) but not to the domestic product portfolio.\(^{22}\) This situation is more likely to happen for labor-intensive (low s) products as $\frac{\partial \lambda(s)}{\partial s} > 0$. Regardless, either of these two changes will lower the overall capital intensity of production for firms that start exporting to capital-abundant countries.

Notice that without more structure about export dynamics, little can be said about the evolution of an exporter’s factor intensity. Table 5 shows a widening gap in capital intensity years after

\(^{22}\) Notice that unlike Bernard, Redding, and Schott (forthcoming), an exogenous productivity shock would not result in product dropping. Product dropping would happen in general equilibrium if trade liberalization happens across the board, which raises the competitiveness of the foreign market and thus the real wage rate.
matching. To rationalize these findings, one needs to consider significant adjustment costs to change product scope, or that there are option values for waiting for the realization of consumer tastes, which can be both country and product-specific. Under either of these considerations, exporters may not attain the optimal product portfolio immediately in the year of exporting. It will adjust the product scope for exports over time towards a more labor-intensive portfolio. We will provide evidence below to show that exporters’ evolution of capital intensity is indeed determined by the change in the product portfolio, on both the intensive margin (through expansion in labor-intensive product sales) and the extensive margin (through product churning).

Our model also predicts that the more productive firms have a larger product scope, as \(\lambda^*_s(\varphi) \) is decreasing in \(\varphi \) for all \(s \). Therefore, all else equal, the shrinkage of the product scope is smaller for the ex-ante more productive firms. As such, the firm’s capital intensity after exporting would also decline less if the firm is more productive (or if the productivity shock that triggers exporting is larger).

Proposition 2 A larger productivity shock that triggers exporting is associated with a smaller decline in capital intensity \(\Theta_{d+j}(\varphi) \) after exporting. Formally,

\[
\frac{\Theta_{d+j}(\varphi)}{\Theta_d(\varphi)} < \frac{\Theta_{d+j}(\varphi')}{\Theta_d(\varphi')} < 1 \text{ if } \varphi' > \varphi.
\]

6.1 A Note about the Revenue-based Productivity Estimates

Our empirical results show that domestic firms become more productive after they start exporting. It is important to understand how changes in product scope after exporting, conditional on \(\varphi \), can contribute to the observed productivity gain. To this end, we derive the revenue-based productivity measure associated with product \(s \) as:

\[
\mu_s = \frac{R_s(\varphi, \lambda_s)}{x(\varphi, \lambda_s)},
\]

where \(x(\varphi, \lambda_s) = \Gamma_s l(\varphi, \lambda_s)^{1-\beta(s)} k(\varphi, \lambda_s)^{1-\beta(s)} \) and \(\Gamma_s \) is a sector-specific constant that delivers a cost function equal to equation (2). By expressing the quantity produced as \(q_s(\varphi, \lambda_s) = \varphi(x_s(\varphi, \lambda_s) - f_s) \), we can rewrite (6) as:

\[
\mu_s = \frac{\varphi^{\beta(s)}}{\rho} \left(1 - \frac{f_s}{x_s(\varphi, \lambda_s)}\right).
\]
Since \(x_s (\varphi, \lambda_s) \) is increasing in \(\lambda_s \) and \(\varphi \), \(\mu_s \) is increasing in \(\lambda_s \) and \(\varphi \) as well. The intuition is that a firm with a better “consumer taste” cutoff and/ or firm productivity produces more and can spread the fixed cost of production (or exporting) over a larger volume of production.

Similarly, the corresponding measured product-specific productivity is

\[
\mu_{sj} = \frac{\tau_{j} \rho \beta(s)}{\rho} \left(1 - \frac{f_{sj}}{x_{sj} (\varphi, \lambda_s)} \right).
\]

Notice that \(\mu_{sj} > \mu_s \) if \(\tau_j \) or resources allocated to production of exported goods, \(x_j (\varphi, \lambda_s) \), are sufficiently high. On the other hand, higher fixed export costs, \(f_{sj} \), would make \(\mu_{sj} < \mu_s \) more likely.

The measured revenue-based productivity of an exporter (selling to country \(j \)) then becomes

\[
\overline{TFP}_j (\varphi) = d_j (\varphi) \int_0^1 \mu_s \frac{R_s (\varphi, \lambda_s)}{R (\varphi)} ds + (1 - d_j (\varphi)) \int_0^1 \mu_{sj} \frac{R_{sj} (\varphi, \lambda_s)}{R_j (\varphi)} ds,
\]

where \(d_j (\varphi) = \frac{R(\varphi)}{R(\varphi) + R_j(\varphi)} \), as defined for equation (5) above. According to this equation, when we observe \(\overline{TFP}_j (\varphi') > \overline{TFP}_j (\varphi) \), it can be partly due to \(\varphi' > \varphi \), an event that triggers exporting, and partly due to product switching after exporting, potentially resulting in a reallocation of resources toward the higher “consumer taste” products, conditional on \(\varphi \).

In an open-economy model with symmetric countries (identical country size and factor endowment) and no iceberg trade cost, because of higher fixed costs for exporting than domestic sales, it can be readily shown that \(\mu_{sj} \) is always smaller than \(\mu_s \) \(\forall s \). In this situation, given \(\varphi \), product-switching is associated with a lower measured TFP in the absence of general equilibrium effects.

However, when we consider asymmetric country size and factor endowment, the contribution of product switching becomes less clear. In particular, we can show that for a given product \(s \), \(\mu_{sj} > \mu_s \) if and only if \(\tau_j \left(1 - \frac{f_{sj}}{x_{sj} (\varphi, \lambda_s)} \right) > \left(1 - \frac{f_s}{x_s (\varphi, \lambda_s)} \right) \). For simplicity, suppose \(\tau_j = 1 \), this inequality is reduced to\(^\text{23}\)

\[
\frac{f_{sj}}{f_s} < \left(\frac{P_j (s)}{P (s)} \right)^\gamma \Psi_j,
\]

where \(\Psi_j = \frac{R_j/P_j}{R/P} \), which is constant across \(s \).\(^\text{24}\) Suppose \(\frac{f_{sj}}{f_s} \) is the same for all products, since \(\tilde{P}' (s) < 0 \) and \(\gamma \equiv \frac{\sigma(1-\nu)-1}{(\sigma-1)(1-\nu)} > 0 \), the right hand side of the inequality is decreasing in \(s \). That is, the inequality is less likely to hold for capital-intensive products, all else being equal. In other words, the more the exporters specialize in labor-intensive products (with relatively higher \(\mu \)), the

\(^{23}\) \(\frac{f_{sj}}{f_s} < \frac{x_s (\varphi, \lambda_s)}{x (\varphi, \lambda_s)} \Leftrightarrow \frac{f_{sj}}{f_s} < \frac{e_{sj} (\varphi, \lambda_s)}{e (\varphi, \lambda_s)} = \frac{R_{sj}}{R} \left(\frac{P_j (s)}{P (s)} \right)^{\sigma-1} = \left(\frac{P_j (s)}{P (s)} \right)^\gamma \Psi_j, \)

\(^{24}\) Suppose \(\tau_j > 1 \), \(\mu_{sj} > \mu_s \) if and only if \(\tau_j = 1 + \frac{f_{sj}}{x_{sj} (\varphi, \lambda_s)} > \frac{x_{sj} (\varphi, \lambda_s)}{x_s (\varphi, \lambda_s)}. \)
higher the measured productivity gain is relative to the actual TFP gain, $\Delta \varphi$, after exporting. That said, it is possible that $\mu_{sj} < \mu_s$ even for the most labor-intensive products exported to capital-abundant countries. This would be the case if f_{sj} is significantly higher than f_s, or the destination country is sufficiently small (low R_j) or remote (high \tilde{P}_j). In that case, the actual increase in TFP after exporting is always higher than the measured one. Specialization in labor-intensive exports is then associated with a relative gain, instead of an absolute gain, in measured productivity.

7 Evidence on Heterogeneous Changes in Capital Intensity

We already provide robust firm-level evidence that supports Proposition 1. Proposition 2 postulates that firms hit by a stronger productivity shock that triggers exporting would experience a smaller decline in capital intensity. We test this prediction by estimating the following specification:

$$\Theta_{i,d}^{matched}(\varphi) - \Theta_{i,d+j}(\varphi) = X_i \gamma + F_{Ind} + F_{Prov} + F_{year} + \varepsilon_i,$$ \hspace{1cm} (8)

where $\Theta_{d+j}(\varphi)$ is firm i's capital intensity, and $\Theta_{d}^{matched}(\varphi)$ is the average measure of capital intensity of the matched “untreated” group of firms. The main idea is to examine how an exporter is different in capital intensity from a non-exporter that shares very similar pre-export characteristics, such as ownership types. X_i is a vector of firm i’s previous year characteristics, including TFP and other key attributes. F_{Ind}, F_{Prov}, and F_{year} stand for industry (480), province, and year fixed effects, respectively.

The results for estimating (8) are reported in Table 7. In column (1), $\ln(TFP)$ is negatively and significantly correlated with the gap in capital intensity between exporters and non-exporters, supporting Proposition 2. To the extent that more productive firm pay higher wages, the negative and significant coefficient on $\ln(\text{wage rate})$ is also consistent with Proposition 2. However, when sales is used as a proxy for productivity, the positive coefficient on $\ln(\text{sales})$ is inconsistent with our theoretical prediction.

Beyond the model predictions, we also find that older firms experience a smaller decline in capital intensity after exporting. While our model assumes exogenous firm productivity and product appeal, one can argue that firm experience in sales can enhance the level of the “consumer taste” attributes. Based on this rationale, expertise in production would imply a higher chance of selling a product in a foreign market. Finally, a positive correlation between initial capital intensity and the decline in capital intensity is consistent with our findings that more labor-intensive firms are more likely to start exporting (see Appendix Table 2). The rationale is that an ex-ante more capital-intensive firm has more room to adjust its product scope to exploit the comparative advantage of
low labor costs in China, resulting in a larger drop in capital intensity.

From columns (2) through (5), we find strong evidence confirming the baseline results using different sub-samples of firms. Regardless of ownership types of firms or sample periods, the results about the firm heterogeneous changes in capital intensity after exporting remain robust.

8 Evidence on Within-firm Product Switching

Since our model emphasizes the multi-product aspect of firms, in the remainder of the empirical analysis, we use transaction-level (firm-product-year) trade data to verify the theoretical results above. We first merge the NBS industrial survey data with the trade data as discussed in Section 3. We use various methods to merge the two data sets, including merging by firm name, address, and manager names. The summary statistics of the merged data set are reported in Appendix Table A5. About one-third of the exporters in the trade data set can be merged with the NBS data set. These merged firms account for 37% to 49% (depending on the year) of the values of aggregate Chinese exports. A conservative estimate shows that over 20% of Chinese exports were intermediated by trading companies (Ahn et al., 2011; Tang and Zhang, 2011). It is worth noting that trading companies are considered service providers, which are included in the trade data set but not in the NBS data set. A large fraction of the unmerged firms in our sample are thus trading companies.

Using the merged data set, we compute capital intensity for each HS 6-digit product. The computation procedures, which are similar to the method used by Bernard et al. (2010), are discussed in Appendix A.3. Table 8 reports the measured capital intensity by broad industries (approximately at the level of HS 2-digit). Similar to the findings by Bernard et al. (2010) for the U.S., there exists a wide variation in capital intensity within industries. For instance, the mean capital intensity of the “textiles and textile articles” industry is about 68 thousands yuan per worker, with standard deviation across HS6 products equal to about 55 thousands. The number of HS6 product categories ranges from 9 (Works of art) to 818 (Textile and textile articles), suggesting that firms have a wide range of products with vastly different capital intensity to choose from within the same industry. In fact, based on the transaction-level data, Table 9 shows that exporters actively add and drop products over time. New exporters in year t (those who did not export in $t-1$ according to the NBS data set) on average added about 10 products, dropped 6 products, and continued only 5 products per year between 2002 and 2006. This active within-firm extensive margin of trade can play an important role in affecting factor intensity and measured productivity after export participation.
Using the merged data set and capital intensity measures at the HS 6-digit level, we compare the (average) capital intensity of the newly added products, dropped products, and products that were continued from the previous year. To this end, we first record all products exported in the first year and subsequent years for each new exporter. In each subsequent year, we keep track of the new, dropped, and continued products. Then for each exporter-year, we compute the sales-weighted averages of capital intensity for each of the following product portfolios: the newly added products, the continued products, and the dropped products. With this panel data set in hand, we estimate the following specification:

\[
\ln(\frac{K}{L})_{ik} = \alpha + \beta (\text{new} _ \text{product}_{ik}) + \delta (\text{dropped} _ \text{product}_{ik}) + e_i, \tag{9}
\]

where \(\ln(\frac{K}{L})_{ik}\) is the sales-weighted average of capital intensity for firm \(i\) and basket \(k \in \{\text{new} _ \text{products}, \text{continuing} _ \text{products}, \text{dropped} _ \text{products}\}\). \(\alpha\) is a constant and \(e_i\) the error term. Our model predicts that newly added products are less capital-intensive than the basket of continued products, while dropped products are more capital-intensive (i.e., \(\beta < 0\) and \(\delta > 0\)).

As Table 9 shows, the estimated coefficient on the new-product dummy is negative and significant using the pooled sample, while the dropped product dummy is positive and significant. More specifically, the new products are about 5 percent less capital-intensive than the continuously exported products, while the dropped products are about 2% more capital-intensive. Importantly, these results hold for both ordinary exporters and processing exporters who assemble imported intermediate inputs solely for foreign sales. These findings address the concern that our results are driven by the predominance of export-processing plants in China.

Finally, we explore the relation between the increase in labor intensity in the first year of exporting and measured productivity to shed light on the “core competence” hypothesis. According to our model, new exporters that experience a large increase in labor intensity should have a relatively higher measured productivity. As is shown in Table 10, we find a positive coefficient on labor intensity gain, controlling for industry, ownership, year fixed effects, and a number of key firm attributes. The results remain robust for both domestic and foreign exporters, and are particularly significant after China’s accession to the WTO.

9 Concluding Remarks

This paper analyzes the causal relations between firms’ productivity, factor intensity, and export participation. In particular, we provide empirical evidence on how firms’ specialization in core competence after exporting can contribute to higher measured productivity. Using panel data for
China’s manufacturing firms over the period of 1998-2007, and the matched sampling techniques from the program evaluation literature for identification, we find that exporting increases domestic firms’ measured productivity. Depending on the matching methods, export participation increases new exporters’ measured productivity by 5.5 to 7.4 percent. We also find that more productive domestic firms self-select into exporting. However, once we take out domestic firms from the sample, foreign exporters do not appear to be more productive than foreign non-exporters, both ex ante and ex post.

These results are broadly consistent with the idea that increasing access to export markets boosts productivity for domestic firms in developing countries. From an industrial policy perspective, there are reasons to promote foreign sales over domestic sales because firms improve once they participate in export markets. Our results also highlight the importance of evaluating the effects of export-promotion policies separately for different ownership types of firms.

Importantly, in sharp contrast to the existing literature, we find that both domestic and foreign firms become less capital-intensive in their first year of exporting relative to the matched non-exporters within a narrow industry. This gap in capital intensity between exporters and the matched non-exporters is not shrinking before 2007, the last year of our sample. To rationalize these results, we develop a variant of the multi-product model of Bernard, Redding, and Schott (2010) to consider varying capital intensity across products. The model predicts that exporters in labor-abundant countries choose to specialize in their core competence – labor-intensive exports to capital-abundant countries. It also discusses how the within-firm reallocation of resources from capital-intensive to labor-intensive products can contribute to higher measured productivity after exporting. Using transaction-level export data, we find evidence that Chinese exporters add new products that are more labor-intensive than the existing exported products, and drop products that are less labor-intensive over time. New exporters with a larger increase in labor intensity after exporting also experience a bigger measured productivity increase, as predicted by the model.
10 References

A Appendix (not for publication)

A.1 Difference-in-difference (DID) Matching Estimator

This appendix discusses the difference-in-difference (DID) matching estimator of Heckman, Ichimura, and Todd (1997). It is a non-parametric approach to estimating the effect of exporting (DID$_X$) at year t, which is given by the following formula:

$$DID_{X,t} = \frac{1}{n_1} \sum_{i \in I_0 \cap C_p} \left(S_{1,t,i} - S_{0,t-1,i} \right) - \sum_{j \in I_0 \cap C_p} W(i,j) \left(S_{0,t,i} - S_{0,t-1,i} \right)$$

where $S_{1,t,i}$ is firm i's characteristics, including TFP, labor productivity defined as value added per worker, sales, employment, capital intensity (K/L), and wages. Subscript '1,t' denotes firms that start exporting in year t, which are not exporting at year $t - 1$ and therefore are denoted by subscript '0, t-1'. Subscript '0, t' denotes firms that never export in the sample period. I_1 denotes the group of new exporters. C_p is the region of common support. n_1 is the number of new exporters that can be matched by a corresponding comparison group. $W(i,j)$ is the non-parametric weight from the local linear regression on propensity score, defined as

$$W(i,j) = \frac{G_{ij} \sum_{k \in I_0} G_{ik} (P_k - P_i)^2 - G_{ij} (P_j - P_i) \sum_{k \in I_0} G_{ik} (P_k - P_i)}{\sum_{j \in I_0} G_{ij} \sum_{k \in I_0} G_{ik} (P_k - P_i)^2 - \left(\sum_{k \in I_0} G_{ik} (P_k - P_i) \right)^2}$$

where $G_{ij} = G((P_i - P_j)/h_n)$, $G(.)$ and h_n denote a kernel function and a bandwidth parameter respectively. P_i is the propensity score of firm i estimated by a probit model conditional on a vector of pre-entry characteristics of firms including ln(TFP), capital intensity, firm age, sales, average wages, region, industry, and year fixed effects (see Appendix Table A3 for the Probit estimation results).

The DID matching estimator is implemented by the PSMATCH2 module in Stata developed by Leuven and Sianesi (2003). Technical details about the local linear regression matching estimator and the nearest neighbor matching estimator can be found in Fan (1993) and Becker and Ichino (2002), respectively.

A.2 Theoretical Derivation

We first present the derivation of the consumer taste cutoffs for domestic sales, $\lambda^*_s(\varphi)$, and exports, $\lambda^*_s(\varphi)$, which are omitted in the main text. For a firm with total factor productivity φ, the consumer taste cutoff $\lambda^*_s(\varphi)$ for product s, above which the firm produces the product for domestic sales, can be obtained by solving the following zero-profit condition (see BRS (2010) for details):

$$\pi_s(\varphi, \lambda^*_s(\varphi)) = \frac{R_s}{\sigma} (\rho P(s) \varphi \lambda^*_s(\varphi))^{\sigma - 1} - f_s(r^{\sigma}(s)) = 0, \quad (A-1)$$

where $\pi_s(\varphi, \lambda^*_s(\varphi))$ represents the firm’s profit by selling a variety of product i domestically; R_s stands for domestic expenditure spent on product s. $P(s)$ is the ideal price index for product s. Specifically, consumers’ utility maximization yields $R_s = \left[P(s) \frac{R^{\frac{1}{\sigma}}}{\int_0^1 P(k) \frac{R^{\frac{1}{\sigma}}}{dk} dk} \right] R$, where R is total expenditure of the economy; $P(s) = \int_{\omega \in \Omega} p(s, \omega)^{1-\sigma} \, d\omega \frac{1}{1-\sigma}$. Expressing R_s in terms of
\(P(s) \), \(R \), and \(\hat{P} = \int_0^1 P(k)^{\frac{\sigma}{\gamma}} \) \(dk \) in (A-1) gives the following expression.

\[
\lambda_s^\ast (\varphi) = \frac{\zeta P(s)^{\gamma}}{\varphi} \left(\frac{\tau_\beta(s) f_s \hat{P}}{R} \right)^{1-\frac{1}{\gamma}},
\]

where \(\zeta = \frac{\sigma+1}{\rho} \) and \(\gamma = \frac{\sigma(1-\nu)-1}{(\sigma-1)(1-\nu)} \). \(\gamma > 0 \) if \(1 < \sigma (1-\nu) \).

Given \(\varphi \) and with \(\lambda_s^\ast (\varphi) \) solved for the marginal product, firm expected profits from serving a given market is:

\[
\pi(\varphi) = \int_0^1 \left[\int_{\lambda_s^\ast(\varphi)}^{\infty} \pi_s(\varphi, \lambda_s) g(\lambda_s) d\lambda_s \right] ds - f_c
\]

where \(g(\lambda_s) \) is the stationary distribution for consumer tastes, which is discussed in detail in Bernard, Redding, and Schott (2010). \(f_c \) is measured in labor, the only factor of production, in BRS, but is measured in Home’s consumption bundle here.

Similarly, we can use the zero-profit condition for export sales of product \(s \) to country \(j \) to solve for the consumer taste cutoff for foreign sales as

\[
\lambda_{sj}^\ast (\varphi) = \frac{\zeta \tau_j P_j(s)^{\gamma}}{\varphi} \left(\frac{\tau_\beta(s) f_s \hat{P}_j}{R_j} \right)^{1-\frac{1}{\gamma}}.
\]

Dividing \(\lambda_{sj}^\ast (\varphi) \) by \(\lambda_s^\ast (\varphi) \) gives the ratio in (4).

Next, we show that \(\frac{P_j(s)}{P_c(s)} \) is decreasing in \(s \) if \(j \) is more capital-abundant than China (i.e., \(\frac{w_j}{w_c} > \frac{1}{1} \)). Express price indices for a given product (suppressed product index \(s \) for simplicity) in China (c) and in country \(j \), respectively are

\[
P_j = \left[\int_{\omega \in \Omega_j} \left(\frac{p_j(\omega)}{\lambda_j(\omega)} \right)^{1-\sigma} d\omega \right]^{\frac{1}{1-\sigma}} + \int_{\omega \in \Omega_{cj}} \left(\frac{\tau_{cj} p_c(\omega)}{\lambda(\omega)} \right)^{1-\sigma} d\omega
\]

\[
P_c = \left[\int_{\omega \in \Omega_c} \left(\frac{p_c(\omega)}{\lambda(\omega)} \right)^{1-\sigma} d\omega \right]^{\frac{1}{1-\sigma}} + \int_{\omega \in \Omega_{jc}} \left(\frac{\tau_{jc} p_j(\omega)}{\lambda(\omega)} \right)^{1-\sigma} d\omega
\]

where \(\Omega_k \) represents the set of products sold by firms in the domestic market \(k \), and \(\Omega_{kl} \) stands for the set of products exported by domestic firms in country \(k \) to country \(l \). \(\tau_{kl} > 1 \) is the iceberg trade cost for exporting from country \(k \) to country \(l \).

Following the procedures in Bernard et al. (2007), the two price indices can be expressed as

\[
P_j = \left[M_j \left(\frac{w_j^{1-\beta}}{\rho \tilde{\varphi}_j} \right)^{1-\sigma} \left(\frac{\tau_{cj} r_{j}^{1-\beta}}{\rho \tilde{\varphi}_c} \right)^{1-\sigma} \right]^{\frac{1}{1-\sigma}}
\]

\[
P_c = \left[M_c \left(\frac{w_c^{1-\beta}}{\rho \tilde{\varphi}_c} \right)^{1-\sigma} \left(\frac{\tau_{jc} w_j^{1-\beta}}{\rho \tilde{\varphi}_j} \right)^{1-\sigma} \right]^{\frac{1}{1-\sigma}}
\]

where \(\tilde{\varphi}_k \) represents the weighted average productivity of firms selling in the domestic market \(k \), weighted by the product attributes \(\lambda \) (see Bernard et al. (forthcoming) for details); while \(\tilde{\varphi}_{kl} \) represents the weighted average productivity of firms in country \(k \) that export to country \(l \).
The mass of firms selling in own market k or exporting from country k to country l, respectively.

All these variables can be solved in general equilibrium in terms of underlying parameters of the distribution of φ and λ, given a constant mass of potential entrants. To conserve space, we refer the readers to Bernard et al. (2007 and 2010). For simplicity, assume that each country has a mass of M potential entrants at any given point in time. Without solving the model fully, we do know that since the fixed cost for exporting is higher than that for domestic sales, $M_c > M_{ cj}$, $M_j > M_{jc}$, $\varphi_{cj} > \varphi_{c}$, and $\varphi_{jc} > \varphi_{j}$. Let us also assume that M_j/M_c, M_{jc}/M_{cj}, and φ_{c}/φ_{j} are all increasing in β. We will come back to verify the validity of these assumptions later.

\[
\left(\frac{P_j}{P_c} \right)^{-1} = \frac{M_c}{M_j} + \frac{M_{jc}}{M_{j}} \left(\frac{\varphi_{jc}}{\varphi_{c}} \frac{1}{r_{jc}} \frac{w_{jr}}{r_j} \right)^{\beta} + \frac{M_{cj}}{M_{j}} \left(\frac{\varphi_{c}}{\varphi_{j}} \frac{1}{r_{cj}} \right)^{\beta}.
\]

Since $\frac{w_{jr}}{r_j} > \frac{w_j}{r_j} \implies \frac{w_{jr}}{r_j} > 1$. With the assumptions on M’s and φ^j’s made, it can be readily shown that $\left(\frac{P_j}{P_c} \right)^{-1}$ is decreasing in β (capital intensity). Thus, given a relatively “tougher market” for capital-intensive sectors in j, and given the mass of firms M, we can then show that M_j/M_c, M_{jc}/M_{cj}, and φ_{c}/φ_{j} are all increasing in β.

We now discuss briefly the argument that Proposition 1 holds as long as $\exists (\varphi) \in (0, 1]$ such that $\lambda^*_{sj}(\varphi) \leq \lambda^*_s(\varphi) \forall s \leq \bar{s}(\varphi)$ and $\lambda^*_{sj}(\varphi) > \lambda^*_s(\varphi) \forall s > \bar{s}(\varphi)$. That is, there always exist some customer taste cutoffs for exporting that are all higher than those for domestic sales. Consider a firm that receives a favorable productivity shock (i.e., $\varphi_t > \varphi_{t-1}$) that triggers exporting to country j. Given the same set of “consumer tastes”, λ’s, the probability that the firm exports product s to country j, conditional on positive domestic sales of product s is equal to $\Pi_1 = 1$ for $s \leq \bar{s}(\varphi)$. For $s \leq \bar{s}(\varphi)$, the probability of positive export sales conditional on no domestic sales is $\Pi_2 = \frac{1-G(\lambda^*_{sj}(\varphi))}{1-G(\lambda^*_{s}(\varphi))}$. For $s > \bar{s}(\varphi)$, the probability of positive export sales conditional on positive domestic sales (the standard consideration) is $\Pi_3 = \frac{1-G(\lambda^*_{sj}(\varphi))}{1-G(\lambda^*_{s}(\varphi))}$, and the probability of positive export sales conditional on no domestic sales is $\Pi_4 = 0$. Π_2 is increasing in s while Π_3 is decreasing in s if and only if $\lambda^*_{sj}(\varphi)/\lambda^*_s(\varphi)$ is increasing in s. In words, a new exporter is more likely to add products if $s \leq \bar{s}(\varphi)$; but less likely to export products with $s > \bar{s}(\varphi)$, less so for higher s. This mechanism delivers $\Theta_d(\varphi) > \Theta_j(\varphi)$. Proposition 1 still holds even $\lambda^*_{sj}(\varphi) \leq \lambda^*_s(\varphi) \forall s \leq \bar{s}(\varphi) \in (0, 1]$.

A.3 Procedures to compute the measures of capital intensity at the HS 6-digit level

A.3.1 Use the pooled sample

1. Calculate the capital intensity of each firm in the National Bureau of Statistics (NBS) industrial survey data.

2. Merge NBS data with customs data using firm names, addresses, and other firm identifiers.

3. For each HS6 product, calculate the weighted average of capital intensity, with weights equal to firm sales according to the NBS data set.
A.3.2 For each new exporter

1. For new exporters in 2001 (who didn’t export in 2000, the first year in the customs data set), find continuing products and newly added products in 2002.

2. For each new exporter in 2001, calculate the capital intensity of new products and continuing products in 2002.

3. Repeat the Steps 1-2 for 2002 all the way to 2005.

4. Estimate specification (9).
Table 1: New Exporter Information 1999-2007 (Odd years only)

<table>
<thead>
<tr>
<th></th>
<th>1999</th>
<th>2001</th>
<th>2003</th>
<th>2005</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Domestic</td>
<td>Foreign</td>
<td>Domestic</td>
<td>Foreign</td>
<td>Domestic</td>
</tr>
<tr>
<td>Total no. of firms</td>
<td>118,251</td>
<td>25,272</td>
<td>121,896</td>
<td>29,332</td>
<td>140,107</td>
</tr>
<tr>
<td>%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Non-exporters</td>
<td>97,079</td>
<td>9,209</td>
<td>96,944</td>
<td>9,534</td>
<td>107,578</td>
</tr>
<tr>
<td>%</td>
<td>82%</td>
<td>36%</td>
<td>80%</td>
<td>33%</td>
<td>77%</td>
</tr>
<tr>
<td>Continuing exporters</td>
<td>18,394</td>
<td>14,742</td>
<td>23,383</td>
<td>18,442</td>
<td>30,128</td>
</tr>
<tr>
<td>%</td>
<td>16%</td>
<td>58%</td>
<td>19%</td>
<td>63%</td>
<td>22%</td>
</tr>
<tr>
<td>New exporters</td>
<td>2,778</td>
<td>1,321</td>
<td>1,569</td>
<td>1,356</td>
<td>2,401</td>
</tr>
<tr>
<td>%</td>
<td>2.3%</td>
<td>5.2%</td>
<td>1.3%</td>
<td>4.6%</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

Export intensity of new exporters (%)

<table>
<thead>
<tr>
<th></th>
<th>0 to 10</th>
<th>10 to 20</th>
<th>20 to 30</th>
<th>30 to 40</th>
<th>40 to 50</th>
<th>50 to 60</th>
<th>60 to 70</th>
<th>70 to 80</th>
<th>80 to 90</th>
<th>90 to 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>35.9</td>
<td>11.1</td>
<td>7.2</td>
<td>6.0</td>
<td>6.2</td>
<td>4.4</td>
<td>5.3</td>
<td>4.2</td>
<td>5.7</td>
<td>14.2</td>
</tr>
<tr>
<td>Sum</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Source: China’s National Bureau of Statistics
Table 2: Comparing Productivity and Capital Intensity of Exporters and Non-Exporters

<table>
<thead>
<tr>
<th>Panel</th>
<th>Dependent variable ln(TFP)</th>
<th>ln(K1/L1)</th>
<th>ln(K2/L1)</th>
<th>ln(K1/L2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>All Firms</td>
<td>All Firms</td>
<td>Domestic</td>
<td>Foreign</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Private</td>
<td>Firms</td>
</tr>
<tr>
<td>Exporter</td>
<td>0.137</td>
<td>0.087</td>
<td>0.101</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>[0.000]***</td>
<td>[0.000]***</td>
<td>[0.001]***</td>
<td>[0.439]</td>
</tr>
<tr>
<td>N</td>
<td>1,916,347</td>
<td>1,916,347</td>
<td>1,104,987</td>
<td>421,232</td>
</tr>
</tbody>
</table>

Panel B: Dependent variable ln(K1/L1)

Exporter	-0.191	-0.062	-0.082	-0.031	-0.041	-0.021	-0.075
	[0.000]***	[0.000]***	[0.000]***	[0.000]***	[0.000]***	[0.000]***	[0.000]***
N	19,876,637	19,876,637	19,063,419	421,561	391,657	568,127	1,431,350

Panel C: Dependent variable ln(K2/L1)

Exporter	-0.171	-0.024	-0.025	-0.017	-0.026	0.002	-0.025
	[0.000]***	[0.000]***	[0.000]***	[0.078]	[0.046]**	[0.564]	[0.000]***
N	1,982,457	1,982,457	1,170,348	421,678	390,431	568,725	1,413,365

Panel D: Dependent variable ln(K1/L2)

Exporter	-0.311	-0.143	-0.178	-0.078	-0.154	-0.124	-0.158
	[0.000]***	[0.000]***	[0.000]***	[0.000]***	[0.000]***	[0.000]***	[0.000]***
N	19,874,962	19,874,962	19,062,152	421,463	391,347	568,121	1,413,480

Year FE Yes Yes Yes Yes Yes Yes Yes
Industry (4-digit) FE No Yes Yes Yes Yes Yes Yes
Ownership FE No Yes No No No Yes Yes

Notes: This table reports estimation results for equation (1) in the text. The Exporter dummy equals 1 if a firm is either a new exporter or a continuing exporter. All regressions include four-digit (about 480) industry, ownership and province fixed effects. In Panel A, ln(TFP) is measured using the Levinsohn-Petrin (2003) method. In Panel B, real capital stock (K1) is measured using the method specified in Brandt et al. (2011), while labor (L1) is the firm's total employment. In Panel C, capital stock (K2) is the net value of fixed assets reported deflated by the industry-specific capital-good deflator, while labor is the firm's total employment. In Panel D, capital stock is measured using the method specified in Brandt et al. (2011), while L2 is the firm's total wage bill. Columns (1) and (2) compare exporters and non-exporters using all firms in the sample; column (3) includes only domestic private firms; column (4) includes only foreign-invested enterprises (FIEs); column (5) includes only state-owned enterprises (SOEs); column (6) and (7) split the sample into that before 2002 before China was accessed to the WTO; and that after and including 2002.
Numbers reported in brackets are p-values corrected for industry-ownership clustering. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
Table 3: New Exporters' Productivity ln(TFP) - Propensity Score Matching Results

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All New Exporters</td>
<td>0.071</td>
<td>0.082</td>
<td>0.065</td>
<td>0.004</td>
<td>0.068</td>
<td>0.071</td>
</tr>
<tr>
<td>Panel A: DID Matching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0.003]***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel B: Local Linear Regression Matching</td>
<td>0.069</td>
<td>0.071</td>
<td>0.062</td>
<td>0.002</td>
<td>0.063</td>
<td>0.072</td>
</tr>
<tr>
<td>[0.004]***</td>
<td>[0.006]***</td>
<td></td>
<td>[0.084]*</td>
<td>[0.674]</td>
<td>[0.005]**</td>
<td>[0.005]**</td>
</tr>
<tr>
<td>Panel C: Nearest Neighbor Matching</td>
<td>0.054</td>
<td>0.056</td>
<td>0.051</td>
<td>-0.005</td>
<td>0.067</td>
<td>0.043</td>
</tr>
<tr>
<td>[0.002]***</td>
<td>[0.005]***</td>
<td>[0.011]**</td>
<td>[0.418]</td>
<td>[0.002]***</td>
<td>[0.003]***</td>
<td></td>
</tr>
</tbody>
</table>

Notes: This table examines the impact of exporting on ln(TFP), using three different propensity score matching methods to compare exporters' ex-post productivity with that of non-exporters. ln(TFP) is measured using the Levinsohn-Petrin (2003) method. P-values, based on bootstrapped standard errors, are reported in brackets. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
<table>
<thead>
<tr>
<th></th>
<th>(1) All New Exporters ln(K1/L1)</th>
<th>(2) Private New Exporters only ln(K1/L1)</th>
<th>(3) Foreign New Exporters only ln(K1/L1)</th>
<th>(4) SOE New Exporters only ln(K1/L1)</th>
<th>(5) Before WTO ln(K2/L1)</th>
<th>(6) After WTO ln(K2/L1)</th>
<th>(7) All New Exporters ln(K1/L1)</th>
<th>(8) All New Exporters ln(K1/L2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: DID Matching</td>
<td>-0.061</td>
<td>-0.063</td>
<td>-0.051</td>
<td>-0.052</td>
<td>-0.066</td>
<td>-0.061</td>
<td>-0.036</td>
<td>-0.093</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.018]**</td>
<td>[0.038]**</td>
<td>[0.063]*</td>
<td>[0.064]*</td>
<td>[0.045]**</td>
<td>[0.029]**</td>
<td>[0.010]**</td>
</tr>
<tr>
<td>Panel B: Local Linear Regression Matching</td>
<td>-0.048</td>
<td>-0.047</td>
<td>-0.042</td>
<td>-0.039</td>
<td>-0.050</td>
<td>-0.047</td>
<td>-0.021</td>
<td>-0.081</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.015]**</td>
<td>[0.028]**</td>
<td>[0.037]**</td>
<td>[0.094]*</td>
<td>[0.024]**</td>
<td>[0.013]**</td>
<td>[0.010]**</td>
</tr>
<tr>
<td>Panel C: Nearest Neighbor Matching</td>
<td>-0.062</td>
<td>-0.075</td>
<td>-0.040</td>
<td>-0.059</td>
<td>-0.07</td>
<td>-0.059</td>
<td>-0.066</td>
<td>-0.103</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.016]**</td>
<td>[0.020]**</td>
<td>[0.025]**</td>
<td>[0.062]*</td>
<td>[0.020]**</td>
<td>[0.008]**</td>
<td>[0.014]**</td>
</tr>
</tbody>
</table>

Notes: This table examines the impact of exporting on capital intensity, using three different propensity score matching methods to compare exporters' ex-post capital intensity with that of non-exporters. In column (1), real capital intensity ln(K1/L1) is measured by the method specified in Brandt et al. (2011), while labor (L1) is the firm's total employment. In column (7), capital stock (K2) is the net value of fixed assets deflated by the industry's investment deflator, while labor is the firm's employment. In column (8), capital stock is measured as in column (1), while L2 is the firm's total wage bill. P-values, based on bootstrapped standard errors are reported in brackets. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
Table 5: Cumulative Capital Intensity $\ln(K1/L1)$ Effects for New Exporters: DID Matching Estimation

<table>
<thead>
<tr>
<th>Year</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
<th>Year 6</th>
<th>Year 7</th>
<th>Year 8</th>
<th>Year 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>-0.086</td>
<td>-0.132</td>
<td>-0.149</td>
<td>-0.171</td>
<td>-0.178</td>
<td>-0.181</td>
<td>-0.184</td>
<td>-0.185</td>
<td>-0.184</td>
</tr>
<tr>
<td></td>
<td>[0.053]*</td>
<td>[0.028]**</td>
<td>[0.034]**</td>
<td>[0.041]**</td>
<td>[0.048]**</td>
<td>[0.052]*</td>
<td>[0.047]**</td>
<td>[0.141]</td>
<td>[0.079]*</td>
</tr>
<tr>
<td>2000</td>
<td>-0.054</td>
<td>-0.081</td>
<td>-0.082</td>
<td>-0.121</td>
<td>-0.131</td>
<td>-0.129</td>
<td>-0.142</td>
<td>-0.143</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.048]**</td>
<td>[0.027]**</td>
<td>[0.031]**</td>
<td>[0.034]**</td>
<td>[0.043]**</td>
<td>[0.045]**</td>
<td>[0.054]*</td>
<td>[0.059]*</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>-0.051</td>
<td>-0.104</td>
<td>-0.131</td>
<td>-0.142</td>
<td>-0.148</td>
<td>-0.156</td>
<td>-0.152</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.024]**</td>
<td>[0.019]**</td>
<td>[0.017]**</td>
<td>[0.042]**</td>
<td>[0.049]**</td>
<td>[0.342]</td>
<td>[0.458]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>-0.017</td>
<td>-0.064</td>
<td>-0.077</td>
<td>-0.093</td>
<td>-0.089</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.152]</td>
<td>[0.041]**</td>
<td>[0.034]**</td>
<td>[0.037]**</td>
<td>[0.052]*</td>
<td>[0.063]*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>-0.055</td>
<td>-0.085</td>
<td>-0.096</td>
<td>-0.106</td>
<td>-0.115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.020]**</td>
<td>[0.022]**</td>
<td>[0.026]**</td>
<td>[0.034]**</td>
<td>[0.037]**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>-0.077</td>
<td>-0.084</td>
<td>-0.101</td>
<td>-0.112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.024]**</td>
<td>[0.031]**</td>
<td>[0.036]**</td>
<td>[0.037]**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>-0.051</td>
<td>-0.081</td>
<td>-0.098</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.031]**</td>
<td>[0.027]**</td>
<td>[0.036]**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>-0.061</td>
<td>-0.081</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.009]**</td>
<td>[0.061]*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>-0.071</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.005]**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pooled</td>
<td>-0.061</td>
<td>-0.090</td>
<td>-0.107</td>
<td>-0.122</td>
<td>-0.133</td>
<td>-0.141</td>
<td>-0.157</td>
<td>-0.165</td>
<td>-0.184</td>
</tr>
<tr>
<td></td>
<td>[0.023]**</td>
<td>[0.020]**</td>
<td>[0.033]**</td>
<td>[0.027]**</td>
<td>[0.035]**</td>
<td>[0.041]**</td>
<td>[0.051]*</td>
<td>[0.095]*</td>
<td>[0.079]*</td>
</tr>
</tbody>
</table>

Notes: This table examines the impact of exporting on capital intensity, using the DID matching technique discussed in Appendix A.1 to compare exporters’ ex-post capital intensity with that of the matched non-exporters. Firms are matched based on estimated propensity scores using the independent variables as listed in Table A2. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. P-values based on bootstrapped standard errors are reported in brackets.
Table 6: Propensity Score Matching Balancing Test

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Bias</th>
<th>% reduction of [bias]</th>
<th>t-test</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treated</td>
<td>Control</td>
<td>%bias</td>
<td>% of bias</td>
<td>t</td>
</tr>
<tr>
<td>ln(TFP)</td>
<td>Unmatched</td>
<td>-1.1267</td>
<td>-1.2696</td>
<td>13.1</td>
<td>97.2</td>
</tr>
<tr>
<td></td>
<td>Matched</td>
<td>-1.1267</td>
<td>-1.1308</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>ln(wage rate)</td>
<td>Unmatched</td>
<td>1.9804</td>
<td>1.7199</td>
<td>34.9</td>
<td>94.1</td>
</tr>
<tr>
<td></td>
<td>Matched</td>
<td>1.9804</td>
<td>1.9651</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>ln(sales)</td>
<td>Unmatched</td>
<td>10.101</td>
<td>9.5056</td>
<td>45.2</td>
<td>98.1</td>
</tr>
<tr>
<td></td>
<td>Matched</td>
<td>10.101</td>
<td>10.112</td>
<td>-0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>ln(age)</td>
<td>Unmatched</td>
<td>2.0858</td>
<td>2.3672</td>
<td>-29.3</td>
<td>96.8</td>
</tr>
<tr>
<td></td>
<td>Matched</td>
<td>2.0858</td>
<td>2.0767</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>ln(K/L)</td>
<td>Unmatched</td>
<td>3.7688</td>
<td>3.7146</td>
<td>4.5</td>
<td>62.7</td>
</tr>
<tr>
<td></td>
<td>Matched</td>
<td>3.7688</td>
<td>3.789</td>
<td>-1.7</td>
<td>-1.7</td>
</tr>
<tr>
<td>LR test (Chi-sq)</td>
<td>Unmatched</td>
<td></td>
<td></td>
<td>2413.7</td>
<td>[0.000]***</td>
</tr>
<tr>
<td></td>
<td>Matched</td>
<td></td>
<td></td>
<td>4.32</td>
<td>[0.431]</td>
</tr>
</tbody>
</table>

Notes: This table reports balancing test for propensity score matching with first year of exporting. For each year, we report p-value of t-tests for equality of means in the treated and non-treated groups, both before and after matching. "% of bias" is the standardized bias before and after matching. We also report the chi-sq statistics and the corresponding p-values of the likelihood-ratio test of the joint insignificance of all the regressors before and after matching.
Table 7: Determinants of Capital Intensity Effects

Dependent Variable = Reduction in ln(K/L) relative to the matched (counterfactual) group

<table>
<thead>
<tr>
<th></th>
<th>(1) All New Exporters</th>
<th>(2) Domestic New Exporters only</th>
<th>(3) Foreign New Exporters only</th>
<th>(4) Before WTO</th>
<th>(5) After WTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(TFP)</td>
<td>-0.059 [0.003]***</td>
<td>-0.052 [0.005]***</td>
<td>-0.081 [0.008]***</td>
<td>-0.080 [0.013]***</td>
<td>-0.056 [0.005]***</td>
</tr>
<tr>
<td>ln(wage rate)</td>
<td>-0.145 [0.000]***</td>
<td>-0.155 [0.000]***</td>
<td>-0.131 [0.034]**</td>
<td>-0.190 [0.000]***</td>
<td>-0.087 [0.013]***</td>
</tr>
<tr>
<td>ln(sales)</td>
<td>0.110 [0.000]***</td>
<td>0.139 [0.000]***</td>
<td>0.141 [0.000]***</td>
<td>0.104 [0.000]***</td>
<td>0.110 [0.000]***</td>
</tr>
<tr>
<td>ln(age)</td>
<td>-0.056 [0.017]**</td>
<td>-0.020 [0.052]*</td>
<td>-0.006 [0.341]</td>
<td>-0.049 [0.094]*</td>
<td>-0.042 [0.018]**</td>
</tr>
<tr>
<td>ln(K/L)</td>
<td>0.765 [0.000]***</td>
<td>0.829 [0.000]***</td>
<td>0.714 [0.000]***</td>
<td>0.784 [0.000]***</td>
<td>0.767 [0.000]***</td>
</tr>
</tbody>
</table>

Ownership FE | Yes | No | No | Yes | Yes |
Industry FE | Yes | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes | Yes |

N | 50,231 | 33,645 | 16,586 | 10,074 | 40,157 |

Notes: All regressors are lagged by one year. P-values based on standard errors clustered at the four-digit industry (480 categories) are reported in brackets. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. Exporters and their matched non-exporters are matched using the DID matching techniques discussed in Appendix A.
<table>
<thead>
<tr>
<th>Sector</th>
<th>HS 2-digit codes</th>
<th>Num. of HS-6 products</th>
<th>Capital Intensity (mean)</th>
<th>Capital Intensity (St Dev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animals & Animal Products</td>
<td>01-05</td>
<td>174</td>
<td>70.9</td>
<td>56.9</td>
</tr>
<tr>
<td>Vegetable Products</td>
<td>06-14</td>
<td>254</td>
<td>71.8</td>
<td>61.1</td>
</tr>
<tr>
<td>Animal Or Vegetable Fats</td>
<td>15</td>
<td>35</td>
<td>64.9</td>
<td>63.3</td>
</tr>
<tr>
<td>Prepared Foodstuffs</td>
<td>16-24</td>
<td>173</td>
<td>94.6</td>
<td>69.0</td>
</tr>
<tr>
<td>Mineral Products</td>
<td>25-27</td>
<td>134</td>
<td>90.1</td>
<td>70.9</td>
</tr>
<tr>
<td>Chemical Products</td>
<td>28-38</td>
<td>764</td>
<td>111.6</td>
<td>66.5</td>
</tr>
<tr>
<td>Plastics & Rubber</td>
<td>39-40</td>
<td>198</td>
<td>79.6</td>
<td>65.2</td>
</tr>
<tr>
<td>Hides & Skins</td>
<td>41-43</td>
<td>62</td>
<td>45.5</td>
<td>47.0</td>
</tr>
<tr>
<td>Wood & Wood Products</td>
<td>44-46</td>
<td>75</td>
<td>62.3</td>
<td>56.5</td>
</tr>
<tr>
<td>Wood Pulp Products</td>
<td>47-49</td>
<td>147</td>
<td>93.7</td>
<td>66.8</td>
</tr>
<tr>
<td>Textiles & Textile Articles</td>
<td>50-63</td>
<td>818</td>
<td>68.1</td>
<td>54.9</td>
</tr>
<tr>
<td>Footwear, Headgear</td>
<td>64-67</td>
<td>55</td>
<td>27.8</td>
<td>43.0</td>
</tr>
<tr>
<td>Articles Of Stone, Plaster, Cement, Asbestos</td>
<td>68-70</td>
<td>147</td>
<td>72.2</td>
<td>64.9</td>
</tr>
<tr>
<td>Pearls, Precious Or Semi-Precious Stones, Metals</td>
<td>71</td>
<td>41</td>
<td>32.1</td>
<td>59.5</td>
</tr>
<tr>
<td>Base Metals & Articles Thereof</td>
<td>72-83</td>
<td>563</td>
<td>93.9</td>
<td>63.5</td>
</tr>
<tr>
<td>Machinery & Mechanical Appliances</td>
<td>84-85</td>
<td>792</td>
<td>99.2</td>
<td>63.9</td>
</tr>
<tr>
<td>Transportation Equipment</td>
<td>86-89</td>
<td>121</td>
<td>107.2</td>
<td>66.8</td>
</tr>
<tr>
<td>Instruments - Measuring, Musical</td>
<td>90-92</td>
<td>235</td>
<td>99.6</td>
<td>62.8</td>
</tr>
<tr>
<td>Arms & Ammunition</td>
<td>93</td>
<td>10</td>
<td>152.4</td>
<td>69.9</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>94-96</td>
<td>130</td>
<td>47.8</td>
<td>51.5</td>
</tr>
<tr>
<td>Works Of Art</td>
<td>97-99</td>
<td>9</td>
<td>30.7</td>
<td>53.2</td>
</tr>
</tbody>
</table>

Notes: The unit is thousand yuan (RMB) per worker. We estimate the capital intensity of HS6 products using the merged data set. This table shows the summary statistics of capital intensity by broad sectors. See Appendix A.3 for the procedure to compute capital intensity at the HS 6-digit level.
<table>
<thead>
<tr>
<th>Year</th>
<th>Number of New Exporters</th>
<th>Number of New Exporters That Survived to Next Year</th>
<th>Total (average) Number of Products Added Next Year</th>
<th>Total (average) Number of Products Dropped Next Year</th>
<th>Total Number of Continuing Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>15,928</td>
<td>13,187</td>
<td>134059 (10.17)</td>
<td>56389 (4.28)</td>
<td>63929 (4.85)</td>
</tr>
<tr>
<td>2001</td>
<td>21,383</td>
<td>18,410</td>
<td>176066 (9.56)</td>
<td>82096 (4.46)</td>
<td>98364 (5.34)</td>
</tr>
<tr>
<td>2002</td>
<td>27,107</td>
<td>22,941</td>
<td>229762 (10.02)</td>
<td>127959 (5.58)</td>
<td>125753 (5.48)</td>
</tr>
<tr>
<td>2003</td>
<td>37,646</td>
<td>31,583</td>
<td>322921 (10.22)</td>
<td>207112 (6.56)</td>
<td>161901 (5.13)</td>
</tr>
<tr>
<td>2004</td>
<td>40,024</td>
<td>33,552</td>
<td>311839 (9.29)</td>
<td>265860 (7.92)</td>
<td>166894 (4.97)</td>
</tr>
<tr>
<td>2005</td>
<td>46,400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>31,415</td>
<td>23,935</td>
<td>9.85</td>
<td>5.76</td>
<td>5.15</td>
</tr>
</tbody>
</table>

Notes: A product is defined as a HS 6-digit category. There are over 5000 HS-6 categories.
Table 10: Capital intensity of new products and dropped products of exporters that started exporting in 2001

<table>
<thead>
<tr>
<th>Dependent Variable: ln(K1/L1)</th>
<th>All New Exporters</th>
<th>Ordinary Trade New Exporters only</th>
<th>Processing Trade New Exporters only</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Product Portfolio Dummy</td>
<td>-0.049</td>
<td>-0.050</td>
<td>-0.048</td>
</tr>
<tr>
<td>Dropped Product Portfolio Dummy</td>
<td>0.021</td>
<td>0.024</td>
<td>0.013</td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>343,062</td>
<td>257,295</td>
<td>85,767</td>
</tr>
</tbody>
</table>

Notes: This table reports the results of regressions of capital intensity on the new product portfolio dummy and the dropped product portfolio dummy. The omitted group is the continuing product portfolio. P-values, based on robust standard errors, are reported in brackets. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
Table 11: Determinants of the TFP effects

Dependent Variable: ln(TFP) gain upon exporting

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All New</td>
<td>Domestic New</td>
<td>Foreign New</td>
<td>Before WTO</td>
<td>After WTO</td>
</tr>
<tr>
<td></td>
<td>Exporters</td>
<td>Exporters</td>
<td>Exporters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>labor intensity gain</td>
<td>0.071</td>
<td>0.071</td>
<td>0.067</td>
<td>0.078</td>
<td>0.064</td>
</tr>
<tr>
<td></td>
<td>[0.000]***</td>
<td>[0.000]***</td>
<td>[0.002]***</td>
<td>[0.002]***</td>
<td>[0.000]***</td>
</tr>
<tr>
<td>ln(wage rate)</td>
<td>0.154</td>
<td>0.184</td>
<td>0.169</td>
<td>0.091</td>
<td>0.164</td>
</tr>
<tr>
<td></td>
<td>[0.000]***</td>
<td>[0.001]***</td>
<td>[0.002]***</td>
<td>[0.003]***</td>
<td>[0.002]***</td>
</tr>
<tr>
<td>ln(sales)</td>
<td>0.141</td>
<td>0.121</td>
<td>0.158</td>
<td>0.157</td>
<td>0.141</td>
</tr>
<tr>
<td></td>
<td>[0.000]***</td>
<td>[0.000]***</td>
<td>[0.000]***</td>
<td>[0.003]***</td>
<td>[0.000]***</td>
</tr>
<tr>
<td>ln(age)</td>
<td>-0.089</td>
<td>-0.094</td>
<td>-0.084</td>
<td>-0.073</td>
<td>-0.112</td>
</tr>
<tr>
<td></td>
<td>[0.009]***</td>
<td>[0.011]**</td>
<td>[0.038]**</td>
<td>[0.077]*</td>
<td>[0.016]**</td>
</tr>
<tr>
<td>Industry FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ownership FE</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Province FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>50,245</td>
<td>33,645</td>
<td>16,600</td>
<td>10,076</td>
<td>40,169</td>
</tr>
</tbody>
</table>

Notes: All regressors are lagged one year, besides labor intensity gain, which is defined as the first difference in labor intensity. Only new exporters are included in the regressions. P-values, based on standard errors clustered at the four-digit industry level, are reported in brackets. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
Figure 5: Scatter Plot of Industry Capital Intensity \(\ln(K/L) \) and Industry Export Intensity, 2007

Note: Export intensity is defined as the export/sales ratio.

Figure 6: Foreign Firms’ Share in Total Exports (1998-2007)