EXTENDED FAMILY AND KINSHIP NETWORKS: ECONOMIC INSIGHTS AND EVOLUTIONARY DIRECTIONS

DONALD COX
Department of Economics, Boston College, Chestnut Hill, MA 02167, USA

MARCEL FAFCHAMPS
Department of Economics, University of Oxford, Manor Road, Oxford OX1 3UQ, UK

Contents

Abstract 3712
Keywords 3713
1. Introduction 3714
 1.1. The role of kinship networks in informal exchange and public good provision 3715
2. The logic of private inter-household transfers 3718
 2.1. Why theory is important and what makes for good theory 3719
 2.2. The logic of family behavior begins with Becker’s model of altruism 3719
 2.3. Quid pro quo 3723
 2.3.1. Exchange 3723
 2.3.2. Mutual insurance 3724
 2.3.3. A theory of informal agreements with limited commitment 3724
 2.3.4. Emotions 3726
 2.3.5. Identification with a group 3727
 2.4. Bargaining and other models of collective action 3727
 2.4.1. Nash bargaining 3728
 2.4.2. The collective model 3729
 2.4.3. Mixed motives 3729
 2.4.4. Coercion 3731
 2.4.5. Village-level risk-sharing 3732

* We wish to thank Paul Schultz for helpful advice and comments on previous drafts. We have also benefited from the comments of Ingela Alger, Megan Way, Kwok Ho Chan, and numerous seminar participants. Cox acknowledges financial support from the National Institute on Child Health and Human Development (R01-HD045637). Fafchamps thanks the Economics and Social Research Council (UK) for their financial support. The work is part of the program of the ESRC Global Poverty Research Group. The findings, interpretations and conclusions expressed in this paper are entirely those of the authors. They do not necessarily represent the views, opinions, or policy of the National Institutes of Health, the World Bank, or of any other government agency.

Handbook of Development Economics, Volume 4
© 2008 Elsevier B.V. All rights reserved
DOI: 10.1016/S1573-4471(07)04058-2
Abstract

What do we know about the role of extended families and kinship networks for redistributing resources? What gaps in our knowledge most need to be filled? How can we best organize current work and identify priorities for future research? These questions are important for several reasons: households in developing countries depend on friends and relatives for their livelihood and sometimes their survival; help exchanged within extended families and kin networks affects the distribution of economic well-being, and this private assistance and exchange can interact with public income redistribution. Yet despite rapid recent progress there remain significant deficiencies in our understanding of the economics of extended families. Researchers confront a large and sometimes bewildering array of findings. We review and assess this literature by starting with an emphasis on standard economic concerns, most notably the possible interaction between government-provided social insurance and private kinship networks. Our review of the evidence suggests that the specter of complete “crowding out,” whereby introduction or expansion of public transfers merely supplants private transfers, appears quite remote, though not impossible. However, numerous studies do suggest partial – but nonetheless substantial – crowding out, on the order of a 20-to-30-cent reduction in private transfers.
per dollar increase in public transfers. But the range of estimated effects is exceedingly wide, with many studies suggesting little private transfer response at all. Reconciling and explaining these disparate findings is a priority for future research. Theorizing about the economics of families should move beyond its concentration on income effects. The empirical literature indeed indicates that non-economic variables, such as age and gender, can have a powerful association with private transfers. We suggest that economists tap into the extensive non-economic literature that takes an evolutionary approach to the family. We show that this literature provides valuable guidance for modeling the effects of age, sex and relatedness in the interactions among extended family members. The evolutionary literature has much to offer economists interested in family behavior by proposing novel interpretations of existing findings and pointing out new and fruitful directions for future research. We encourage economists to pay more attention to this approach when studying kinship networks.

Keywords

extended family, kinship network, private transfers, remittances, inter-household transfers, crowding out, risk sharing, Hamilton’s rule, cultural norms

JEL classification: A12, D10, H42, I30, J13, J10, J43, J61, O17, Q12, Z13
1. Introduction

What do we know about kinship networks and extended families in developing countries? What do we wish we knew? This chapter organizes the rapidly growing, and sometimes unwieldy, economics literature on private transfers and risk sharing between households. We start by “viewing the glass as half full,” by assessing the many contributions that economic research has made in recent years to our understanding of the behavior of kin networks and extended families. We end by “viewing the glass as half empty,” by pointing out how research in this sub-discipline might be improved and expanded. We note in particular the potential for evolutionary thinking to inform future economic research on family behavior.

Extended families are important just about everywhere, but especially so in poor countries, where social safety nets are incomplete or nonexistent and households must cope with an unforgiving environment of severe poverty and shocks to economic and physical well-being. Autonomy is not a likely option for a household struggling to make ends meet in the face of looming disasters such as drought, flooding, pestilence or infectious disease – especially against a backdrop of inadequate formal credit and insurance markets and a minimal welfare state. In poor, laissez-faire economies ties to communities, friends and relatives – both near and far – can make the difference between surviving and perishing.

We begin the Chapter by documenting the various economic roles that kinship networks and extended family have been shown to play – but also their limitations. Two questions arise from the literature:

1. What are the reasons for the limited effectiveness of kinship networks?
2. Are the services provided by kinship replaced by public provision?

The answer to the first question takes us to review succinctly the now extensive literature on limited commitment and asymmetric information. The answer to the second takes us back to the debate on crowding out. For over three decades economists have been intrigued by the interplay between kinship ties and public-sector efforts to alleviate poverty and mitigate risk. Public safety net interventions can dilute incentives to maintain a private, informal coping network. Economists have long been cognizant of the specter of such “crowding out,” an unintended consequence of public income redistribution that could, at least in principle, render the distribution of economic well-being impervious to the most ambitious plans for fighting poverty.

While the logic of crowding out was first proposed long ago (Becker, 1974) and has gone through numerous variations and refinements, pertinent evidence was comparatively lacking at first. But nowadays, thanks to advances in data collection and econometrics, lower costs of computing and burgeoning interest among empirical researchers, there exists a large and rapidly growing empirical literature on inter-household transfers and risk sharing. This corpus of work enables us to take an initial stab at assessing the economic importance of crowding out and other issues connected to networks of extended kin.
At the same time, our summary of the literature reveals a patchwork of disparate methods and focus. While the empirical literature has grown, it has not yet matured to the point of providing a consistent picture of extended families, and much work needs to be done to reconcile conflicting findings. For instance, though we have much more evidence about crowding out than we did 15 years ago, it is sometimes diffuse and often contradictory; estimates range from “extremely important” to “negligible,” and compelling explanations for these disparities are frequently lacking. The literature is ripe for consolidation and reconciliation – much like, we believe, the empirical labor supply literature in the early 1980s. We are reassured to find that work in this vein has recently begun, and we discuss it at the end of our survey.

After our assessment of what is in today’s literature, we turn to a discussion of what remains missing from it. Much of the existing literature on private transfers and risk sharing between households is concerned, one way or another, with income effects: how private transfers respond to pre-transfer household incomes, the extent to which risk sharing networks buffer consumption from income shocks, and the like. But our reading of the empirical literature suggests that demographic variables, such as age, gender and relatedness, also figure importantly in kinship networks. Yet economics provides little theoretical guidance for understanding these effects per se.

We contend that evolutionary biology represents a fruitful avenue for addressing this gap. In the latter part of this chapter, we explain how insights from evolutionary biology inform and complement economic research on extended families by providing a framework for understanding, among other things, age patterns in inter-household transfers, differences in the behavior of fathers and mothers, and differences in the treatment of sons versus daughters. We conclude that a biologically based approach has the potential to expand the economic literature on kinship in novel and useful directions.

1.1. The role of kinship networks in informal exchange and public good provision

We begin by providing a brief overview of the evidence regarding the role that kinship and extended families play in various forms of exchange and provision of public goods. There is a large literature documenting the exchange of services and the provision of public goods between households in informal, non-market ways. In fact, this literature is so large that it is impossible to do it justice in a few pages. Here we limit ourselves to a few salient examples. We first illustrate the many roles that kinship networks play before pulling some common threads upon which we focus in the rest of the Chapter.

Much of the recent economic literature on kinship has focused on risk sharing. This follows a decade in which risk sharing between households attracted a lot of attention from economists (e.g. Mace, 1991; Cochrane, 1991; Townsend, 1994). Empirical investigation of gifts and transfers between households has brought to light their role as risk sharing mechanisms (e.g. Rosenzweig, 1988; Rosenzweig and Stark, 1989; Fafchamps and Lund, 2003). Researchers have also noted that most transfers between households take place between close relatives (e.g. Lucas and Stark, 1985; Ellsworth, 1989; Lund, 1996; Fafchamps and Gubert, 2007a). Most papers, however, reject the hypothesis of
“full” risk sharing in favor of “partial” risk sharing. A close look at the numbers also reveals that, while the signs of the coefficients are consistent with risk sharing, the magnitudes themselves can be quite tiny, as in Rosenzweig (1988) for instance. Why this may be the case is discussed in Section 2.

Households do not just pool risk. Labor pooling is an institution commonly found in many developing countries. It takes many different forms, such as rotating arrangements and labor gangs. One of its purposes is to provide protection against health risk. Farming operations must be done in a timely manner. If a farmer is ill and cannot complete a critical task on time, the work of a whole season may be lost. Labor pooling enables farmers to seek assistance from their neighbors. In their discussion of labor pooling groups in rural Ethiopia, Krishnan and Sciubba (2004) point out the role that extended families and kinship play in facilitating the formation of these groups.

Fostering children from another family is a very common practice in many poor countries, and is often used to enable children to attend a distant school (e.g. Akresh 2004, 2005). Child fostering also takes place in response to shocks, such as the death of one or both parents. Evans (2005) illustrates the role that child fostering plays in caring for AIDS orphans in Africa (see also Evans and Miguel, 2005 and Ksoll, 2007). In all studies, child fostering takes place primarily between close relatives. In their work on South African pensioners, Case and Deaton (1998) document how frequent it is for children to live with their grandparents. Evans (2005) finds the same for AIDS orphans. Not all children in need enjoy the benefits of fostering, however. A small minority end up as street children. Many others remain in the care of parents who do not have the resources or wherewithal to provide them with the nutrition and schooling they need.

The extended family and kinship networks provide many forms of insurance and protection against external events. Those who flee drought and famine or roving bandits and lawless armies seek shelter among relatives and kin whenever possible. Migrants provide shelter and assistance to freshly arrived migrants, creating tightly knit migration networks linking village of origin and place of destination (e.g. Munshi, 2003; Granovetter, 1995a). Funeral societies are another illustration of insurance institutions that transcend the household. Dercon et al. (2004) document the importance of funeral societies in rural Ethiopia and Tanzania as a way of dealing with funeral costs. While the funeral society is in many ways a formal institution with clearly defined regular contributions, the enforcement of contractual obligations often rests on extended family and kinship ties.

Other public goods require the pooling of resources to protect productive assets, such as the cleaning of irrigation canals or the preservation of communal resources. In these cases too, informal institutions play a paramount role (e.g. Wade, 1988; Baland and Platteau, 2000). But the form that collaboration must take depends on the distribution of occupations and assets, not on family and kinship ties. For instance, farmers must maintain the irrigation canal they share, whether they are related to each other or not. This makes collaboration more difficult, which probably explains why irrigation maintenance and the preservation of common property resources have received more attention in the literature than forms of collaboration in which households can choose each other
freely. Indeed, when they can choose with whom to collaborate, households tend to select individuals related by blood or kin, probably because they anticipate things to go more smoothly.

Networks of blood and kin also serve to relay important information, such as information about job or business opportunities. Granovetter (1995b), for instance, documents the role that networks play in matching workers and employers. Montgomery (1991) proposes a model in which employed workers help their employer identify suitable recruits. In practice, these new recruits often are relatives and kin members (Barr and Oduro, 2002). Munshi (2003) and Granovetter (1995a) provide evidence of how information about business opportunities circulates in family and ethnic networks.

Sometimes cooperation goes beyond the exchange of useful information, as when individuals pool resources together to create a new business. At the heart of many businesses a partnership can be found, and many partnerships are grounded in family and kin ties. In agricultural communities, relatives may pool their efforts in order to maintain a larger farm, using vertically or horizontally integrated households (Binswanger and McIntire, 1987). Individuals can also pool their savings by creating rotating savings and credit associations (ROSCAs) (e.g. van den Brink and Chavas, 1997; Besley, Coate and Loury 1993). These associations often transcend family relationships, as, for example, when market traders form a ROSCA to reconstitute their working capital. This probably explains why ROSCAs are rather formal, with clearly defined rules and obligations (e.g. Aryeetey and Udry, 1997; Anderson and Baland, 2002).

It has been argued that family and kin networks play a role in markets themselves, implying that market transactions often take place between relatives and kin. Fisman (2001b), for instance, interprets evidence that supplier credit is preferentially given to members of the same ethnic group as evidence of family ties. Fafchamps (2001) argues that this is not in general the case: because they are embedded in long-term relationships, exchanges between close relatives seldom take the form of a well-defined market transaction. It is, however, possible to find examples of preferential hiring and of higher wages paid to employed relatives (Barr and Oduro, 2002). There is also evidence, however, that entrepreneurs are reluctant to employ relatives because they are difficult to discipline. A much more common form of family involvement in the business is as unpaid help or partners. This ensures that profits are shared and is consistent with the long-term risk sharing relationship that typically binds extended family members.

Fafchamps and Lund (2003) demonstrate that risk is shared via gifts, transfers and informal loans. They show that risk sharing takes place primarily within relative and kin-based networks. They also point out that while close relatives provide gifts, more distant relatives make informal loans. These loans are hybrid debt contracts, whereby money is lent at zero interest in exchange for the promise of future repayment. As Udry (1994) and Fafchamps and Gubert (2007a) show, repayment of such loans is contingent on shocks affecting both parties. They further show that contingent repayment takes place by letting borrowers in difficulty delay repayment and pay off part of the debt in labor.
As we have illustrated, family relations can be used for good things. They can also be used for bad. Fisman (2001a), for instance, provides empirical evidence that Indonesian businesses headed by relatives of the Suharto family benefited from preferential treatment. Family and kin ties can be used for collusion and price fixing, or to cement efforts to exclude outsiders from jobs and market opportunities: the Ku Klux Klan is perhaps the most despicable illustration of this type of network effect. Family ties can be used to attract and divert development aid, as discussed by Platteau and Gaspart (2003). Ensminger (2004) provides a chilling account of how development aid directed at poor Kenyan herders was diverted by a family ring. Family ties can also be harnessed to ensure collaboration and enforce a law of silence among criminals and terrorists. Gambetta (1993) illustrates this in the case of the mafia. Others have discussed it in the case of terrorism (Krueger and Maleckova, 2003).

What this brief overview of the literature shows is that family and kinship networks often fulfill roles that economists normally attribute to other entities. They can provide insurance, facilitate transactions and support the exchange of goods and services, which are roles commonly assumed to be fulfilled by markets. Unlike markets, however, in these roles they do not rely on legal contracts. Kinship networks can also help organize the provision of public goods, a role that normally falls upon the government. But they do so without the power to tax or mobilize resources. Rather, the provision of public goods is organized as a form of exchange of favors between individuals and households.

In the absence of formal contracts, exchange typically takes the form of a sequence of unilateral transfers. There may be an implicit understanding that the exchange of favors is embedded in a long-term relationship between individuals. But what cements this relationship is not entirely clear: Is it quid pro quo? Is it altruism, and if so, where does altruism come from? The answers to these questions are important because they determine what we can reasonably expect the limitations to kinship networks to be, and how we should expect these networks of interact with markets and with government provisioning of public goods. To these issues we now turn.

2. The logic of private inter-household transfers

What is the economic logic that governs private transfers of money and other forms of assistance between households? What relationships in the data would we expect if donors were motivated by unvarnished altruism? How about if they gave in expectation of some quid pro quo or in response to pressure from potential recipients? Are the decisions of donor households best envisioned as unilaterally determined or as part of a bargaining process?

1 Within households, patrimonial issues are often regulated by law—e.g., inheritance, child support, alimony. But relations between households typically fall outside the purview of patrimonial law.
2.1. Why theory is important and what makes for good theory

Examining the logic of inter-household transfers and kinship ties among extended family members is important for several reasons. First, we seek **parsimony**: without some logic to narrow down the list of conceivable hypotheses, empirical investigations of inter-household transfers could veer toward disorganization and vagueness. To say without further elaboration that private transfers are governed by, say, “human nature” or “norms,” for example, opens to door to haphazard, torturous empirical inquiry, exacerbated by the availability of ever-more-complex household surveys containing hundreds if not thousands of questions. Empirical work unmoored by parsimonious theory risks falling prey to a “curse of dimensionality,” whereby partial correlations are ground out in conceivably limitless fashion. Such insidious combinatorics create fertile ground for any number of Type I errors.

Second, we seek the **counter-intuitive**: ideally, the logic of private transfer behavior should not just narrow the field of empirical relationships deemed interesting, it should illuminate non-obvious behavioral pathways. (Why bother theorizing if it just produces answers anyone could have guessed *ex ante*)? Not all theories fare equally well on this front. For instance, a theory might posit that feelings of affection and closeness lead to transfers and assistance among family members. An empirical “test” might constitute correlating self-reported subjective feelings of closeness and actual assistance given. It would be surprising if such correlations did not turn out positive, yet such putative “theory” does little to impel us to think about family behavior in new and different ways.

Third, we seek the **falsifiable**: we want our theories to be bold enough that they dare empirical researchers to shoot them down. Non-testable assertions are devoid of predictive power.

Economic theories of inter-household transfers and kinship have done well in some respects but not in others. The successes have mostly to do with explaining the income effects of private inter-household transfers. The prominent approaches provide succinct, falsifiable and sometimes even surprisingly provocative hypotheses about the interplay between income endowments and private transfers. The remaining deficiencies have mostly to do with how influences such as age and gender are conceptualized in the economics of family behavior. We suggest how these deficiencies might be remedied later. First, we point out where economic theory has succeeded to date.

We now discuss three major categories of explanations for the existence of private transfers along kinship or extended family networks: altruism, quid pro quo, and bargaining.

2.2. The logic of family behavior begins with Becker’s model of altruism

Without question, Becker’s (1974) model of altruistic transfers provides the central conceptual benchmark for analyzing the behavior of extended families, and not just because it marks the beginning of modern economic analyses of the family. Becker’s simple framework contains a prediction of manifest significance for both the understanding of
family behavior and for income redistribution policy – namely, the possibility that public transfers of income, instead of shuffling resources from rich to poor, might merely supplant private transfers, leaving the distribution of economic well-being unchanged.

The argument is simple. Imagine two people, an altruistic donor, d, and a recipient, r, endowed with incomes I_d and I_r. “Altruistic” here means utility interdependence; the donor’s utility, U, depends on her own consumption, c_p, and the recipient’s utility, V, which in turn depends on recipient consumption, c_k:

$$U = U(c_p, V(c_k)). \quad (1)$$

The donor implicitly decides individual consumption levels by adding a private transfer, T, to the recipient’s endowment of income I_r, in order to achieve a consumption pair $\{c_p, c_k\}$ that is most desirable from the donor’s perspective. Joint consumption possibilities are determined by aggregate income, $I_d + I_r$; the donor’s preferences in (1) pin down the optimal transfer T^*.

Now imagine a forced income transfer (a tax or subsidy, say) of $\tau < T^*$ from donor to recipient. Joint consumption possibilities remain unchanged, as do donor preferences. Hence each person’s optimal consumption is likewise unchanged. What does change, then, is the private transfer, which must fall enough to exactly offset the public transfer τ.

The thought experiment of the forced transfer has become known as the “transfer derivative” (see, e.g., Cox and Rank, 1992; Altonji, Hayashi and Kotlikoff, 1997), expressed as

$$\frac{\partial T}{\partial I_r} - \frac{\partial T}{\partial I_d} = \frac{\partial T}{\partial \tau}. \quad \text{Assuming pre-redistribution private transfers match or exceed } \tau, \text{ the Beckerian transfer derivative is } -1; \text{ public transfers completely “crowd out” private ones. Adding administrative costs to public income redistribution generates a perverse outcome: by shrinking joint consumption possibilities, it hurts those it is presumably trying to help!}$$

It is no exaggeration that the specter of crowding out served as a primary catalyst for the burgeoning literature on private transfer behavior. Not that it is the only reason to be interested in private transfers, which have been implicated in such diverse economic phenomena as: capital formation (Kotlikoff and Summers, 1981); human capital investment, inequality and intergenerational mobility (Becker and Tomes, 1979); insurance against income risk (e.g., Rosenzweig, 1988); migration (e.g., Lucas and Stark, 1985); and the alleviation of capital market imperfections (Ishikawa, 1974; Cox, 1990).

Nonetheless, crowding out is still routinely cited as a leading impetus for investigations of private transfers, and the measurement of transfer derivatives continues to figure prominently in empirical work.

Despite the simplicity of the model, some misconceptions about the logic of crowding out and altruism arise repeatedly in the applied literature. The most common one is this:

• Misconception – Testing for evidence consistent with altruistic preferences entails checking that the sign of the estimated value $\partial T/\partial I_r$ is negative.

Wrong: the magnitude of $\partial T/\partial I_r$ matters too. For the sake of the argument, imagine a regression equation – free from any specification problems – that produces a precisely estimated value of -0.02 for $\partial T/\partial I_r$. For the value of the transfer derivative
\(\partial T/\partial I_r - \partial T/\partial I_d \) to be consistent with altruistic preferences (i.e., equal to \(-1\)) would require an implausibly large estimated value for \(\partial T/\partial I_d \). To be consistent with altruistic preferences, the empirical value of \(\partial T/\partial I_r \) must generally be not just negative, but negative and large in absolute value. For instance, an altruist with Cobb–Douglas preferences who places equal weight on her own consumption and that of the recipient would respond to a shortfall in recipient income by raising her transfers 50 cents per dollar shortfall – a far cry from the meager 2-cent response above.\(^3\)

Moreover, while large transfer derivatives are necessary for the presence of altruistic transfer motives, they are not sufficient:

- **Caveat** – Finding large transfer derivatives does not necessarily imply altruistic preferences.

For instance, it is possible, at least in principle, for two completely selfish people to enter into a mutually beneficial co-insurance arrangement. They might decide, for example, to pool their incomes, setting each person’s consumption equal to, say, half of their combined income. Such an arrangement can yield transfer derivatives that are identical to those implied by altruism. The reason has to do with the logic of shared budget constraints: as in the altruism case, any redistribution that keeps joint income constant must prompt equal and offsetting adjustments in private transfers in order to maintain the agreed upon allocation rule for consumption.

But tweak the rather implausible scenario above with just a bit of realism – say, the addition of moral hazard – and one can get vastly smaller transfer derivatives, as we will see in more detail in our discussion of non-altruistic transfer motives. The intuition is simple: like a market insurance company, I am concerned that if I protect a huge fraction of your income shortfalls, you will take less care to guard against preventable trouble. I act on this concern by requiring you to bear part of the consequence of any shortfall; hence, transfer derivatives would be smaller with moral hazard.\(^4\)

A further observation about the logic of altruism and transfer derivatives with possible consequences for empirical work is this:

\(^2\) For more extensive discussions of tests for intergenerational altruism, see Cox and Rank (1992) and Altonji, Hayashi and Kotlikoff (1997).

\(^3\) Can the 2-cent response ever be consistent with altruism? Yes, as we will see below, but for this to happen requires stepping outside of a single-period framework.

\(^4\) A bit of logic associated with the altruism model that is rarely discussed, but potentially important for empirical work is this:

- An overlooked attribute of the altruism model – Altruism generates a linear relationship between private transfers and income.

The transfer derivative emanates from movement along a linear family budget constraint: taxing the donor and giving the proceeds to the recipient and the corresponding adjustment in private transfers are each movements along a linear constraint. All of the action in these comparative statics emanates from the budget constraint; the preferences themselves do not matter except to insure an interior solution for transfers.

Why is this linearity relevant for empirical work? Because an empirical test of altruism that regresses (say) the log of transfer receipts on the log of donor and recipient incomes may be getting the specification wrong from the very start. Altruism imposes a linear structure that comes straight out of the logic of the model. Whatever its other putative merits, a log–log specification is logically inconsistent with shared budget constraints.
Life-cycle considerations can matter – The pronounced transfer derivatives predicted by the altruism model could well be a good deal weaker once life-cycle considerations are taken into account.

Here is a simple illustration: suppose that donor and recipient live for 50 periods. Suppose also – and this is crucial – that each has access to perfect capital markets. For simplicity, abstract away from subjective rates of time preference or interest rates; each is zero, and desired consumption profiles are flat. Imagine a forced transfer that occurs in the first period only: the donor is taxed $100 to finance a one-shot subsidy for the recipient. The logic of crowding out still applies; the donor will reduce his transfers to the recipient by the same amount. Only now the timing of this reduction is no longer pinned down. The donor could reduce his private transfers immediately and all at once, but he could also spread out the reduction in $2 installments over 50 periods. If we were to observe only the first period, it would appear that transfer derivatives were rather tepid; when in fact over the life-cycle they still attain the full value of -1 predicted by altruism.

Relax the perfect capital markets assumption and it is possible to restore the full value of the transfer derivative in the first period. Suppose that the recipient is credit constrained in the first period, and that the altruistic donor is currently transferring $150 to alleviate this constraint. The same $100 forced redistribution would now prompt an immediate $100 reduction in private transfers. Thus, life-cycle considerations and borrowing constraints can figure importantly into the logic of transfer derivatives in the altruism model.5

An empirical exigency that sometimes gets glossed over is that private transfers are rarely so widespread that all households participate: hence, prior to coming to grips with the relationship of primary interest – namely, the transfer derivative – researchers must first grapple with the problem of the occurrence of a transfer. While most empirical work scrupulously attends to the potential selection bias inherent in estimation of income effects conditional on a transfer taking place, many find it tempting to interpret the income effects pertaining to transfer events (income coefficients in a probit estimation for transfer receipt, for instance) in light of the altruism hypothesis. While finding, for example, that private transfers tend to be targeted to low-income households might be consistent with the altruism hypothesis, it does not necessarily rule out other, non-altruistically motivated explanations, such as exchange (Cox, 1987).

A final observation about altruism and transfer derivatives pertains to whether the donor values the act of giving per se:

- The “purity” of altruism matters – If an altruistic donor cares not just about the recipient but also about the act of giving, transfer derivatives will be weaker and crowding out less than complete.

5 For a detailed discussion, see Cox (1990). One obviously important empirical issue is the extent to which poor households in developing countries face capital market imperfections. See Conning and Udry (2007) for a recent review of the myriad imperfections that beset rural credit markets in developing countries.
In Becker’s model altruism is “pure”; as long as the recipient is happy, the donor is happy, regardless of how the recipient’s consumption is financed: be it a result of the donor’s own largesse or someone else’s. In contrast, if for some reason the donor also cares separately about his or her own giving – the so-called the “warm glow” or “impurely altruistic” model of Andreoni (1989) – then in the donor’s eyes private and public transfers are no longer perfect substitutes. Returning to our example of income redistribution and crowding out, the impurely altruistic donor would respond by cutting private transfers T by less than the forced transfer τ. The donor’s reluctance to sacrifice “warm glow” generates this less than dollar-for-dollar response.

We have assigned a central role to transfer derivatives and crowding out in our discussion of the altruism hypothesis. It is the possibility of crowding out that, in our view, makes altruism the model to consider first and foremost, and the hub around which the rest of the theoretical literature on the extended family revolves. Because most of that other literature, with its emphasis on alternative motives for private inter-household transfers, refutes the prediction of crowding out, we think it makes sense at first pass to divide the logic of familial transfers into altruistic and non-altruistic approaches.

2.3. Quid pro quo

Despite its pre-eminence as a conceptual benchmark for family behavior, it is easy to imagine motivations for inter-household transfers that do not, at the margin, operate according to the altruistic framework pioneered by Becker. For instance:

- Private transfers might be given in exchange for goods or services provided by the recipient: a migrant remits to his sister to compensate her for taking care of his property while he is gone; a parent lends money to his young adult child in exchange for old-age support later in life; a landowner conditions a bequest on the appropriate behavior of children.

- Private transfers might be part of an informal insurance contract among self-interested people.

A primary reason to care about these and other non-altruistic motives for private transfers is that they likely entail transfer derivatives that differ markedly from those implied by Beckerian altruism.

2.3.1. Exchange

For instance, it is unlikely that public transfers would crowd out private transfers if the latter were not altruistically motivated but instead part of a two-way exchange (Bernheim, Shleifer, and Summers, 1985; Cox, 1987). Suppose that the donor uses private transfers, T, to compensate the recipient for the latter’s provision of services, s.

6 While altruistic feelings might be intermingled as well – as in, for example, Lucas and Stark’s (1985) eclectic approach – let us focus strictly upon exchange for the moment.
These “services” can be just about anything with less-than-perfect market substitutes, such as hours of care a wife provides to her mother-in-law. Suppose that providing services is costly and requires compensation. One can think of an implicit price that translates services into financial compensation:

\[T = ps. \]

(2)

Exchange-related transfer derivatives can differ dramatically from altruistic transfer derivatives. For instance, a rise in recipient income, \(I_r \), would reduce the supply of services, raising \(p \) and reducing \(s \). To a first approximation, \(T \) would rise or fall with \(I_r \) depending on whether the donor’s demand for services were price inelastic or not. This result is obviously quite different from that of Beckerian altruism, where \(\partial T/\partial I_r \) is unambiguously negative and plausibly large.

2.3.2. Mutual insurance

The value of \(\partial T/\partial I_r \) can likewise be markedly weaker than the “Beckerian benchmark” if private transfers are part of a self-interested system of mutual insurance (Kotlikoff and Spivak, 1981; Kimball, 1988; Coate and Ravallion, 1993). To illustrate, consider an example from Coate and Ravallion (1993): two self-interested parties play a non-cooperative ‘insurance game’ over an infinite horizon. What should be the rule for how transfers respond to income shocks, seeing how such a game can only be sustained if players do not have an incentive to defect? Coate and Ravallion show that the solution to this “implementability constraint” places a floor on transfers from the more fortunate to the less fortunate party. The floor serves to limit the more fortunate party’s liability in order to prevent him from ducking an especially onerous transfer obligation through defection. Once this floor is reached, \(\partial T/\partial I_r = 0 \). This simple example can be extended to many forms of informal exchange based on quid pro quo. To this we now turn.

2.3.3. A theory of informal agreements with limited commitment

The theory of informal exchange with limited commitment starts from the observation that the enforcement of contracts by courts is not always feasible. Courts may be absent or unreliable, or the arrangement may be illegal or simply unprotected by law. In mutual insurance arrangements, writing a complete contract allowing for all contingencies may be too time consuming or simply impossible. Many transactions are too small to justify court action, or the parties too poor to recover anything in case of victory in court. This is particularly true in developing countries where many firms and market transactions are small and many people are too poor to be sued. In all these circumstances legal enforcement of contracts is problematic even though gains from exchange and public good provision may be relatively large. Informal enforcement mechanisms become necessary.

7 Implicit because few families would likely be so mercenary as to even use the “\(p \)”-word.
to enforce contracts, ensure contribution to public goods, and coordinate individual actions.

The literature has identified a variety of enforcement mechanisms that do not rely directly on legal institutions (e.g. Platteau, 1994a, 1994b; Greif, 1993; Fafchamps, 1996). Economists have paid most attention to mechanisms that rely on rational self-interest. Borrowing from Evans-Pritchard’s (1940) observation that it is scarcity not prosperity that makes the Nuer (in Southern Sudan) generous, Posner (1980) pointed out that informal arrangements can be built upon *quid pro quo*: I help you today because I expect you to help me tomorrow. Behavioral evidence supports the *quid pro quo* idea: individuals in experimental situations conditionally cooperate even in finitely repeated games. This point was made most forcefully by Axelrod (1984), who described tit-for-tat behavior in such experiments as ‘brave reciprocity’. Axelrod’s interpretation is that, when faced with somebody new, people often give them the benefit of the doubt and start by playing cooperatively. They continue playing cooperatively as long as the other person does. But if they are cheated, they retaliate. The emergence of this human trait can be given an evolutionary interpretation, arguing that brave reciprocity makes it possible for human societies to achieve cooperation in a rapid and decentralized manner (see the economics literature on evolutionary games).

These insights were subsequently formalized with the help of repeated game theory to explain how contracts can be enforced in the absence of legal recourse. Early applications of this principle can be found in the literature on sovereign debt (e.g. Eaton and Gersovitz, 1981; Eaton, Gersovitz, and Stiglitz, 1986; Kletzer, 1984; Grossman and Van Huyck, 1987). The successful application of repeated game theory to risk sharing by Kimball (1988), Fafchamps (1992) and Coate and Ravallion (1993) has been able to explain many empirical puzzles, notably the failure of informal risk sharing during times of great stress, the emphasis on quasi-credit rather than gifts, and asymmetric risk pooling between rich and poor – often referred to as patronage. Further extensions by Ligon, Thomas, and Worrall (2001), Foster and Rosenzweig (2001) and Fafchamps (1999) have bridged the gap between gift exchange and quasi-credit of the kind described by Platteau and Abraham (1987), Udri (1994), and Fafchamps and Gubert (2007b).

In a repeated prisoner’s dilemma, the threat of exclusion is the cornerstone of the enforcement strategy: breach of contract is deterred by threatening exclusion from future exchange. The cost of exclusion rises if an informal arrangement is embedded within a long-term multifaceted relationship: breaching an informal arrangement not only leads to the loss of further exchange within the arrangement, but possibly leads to the loss of other benefits associated with this relationship, such as socialization, participation in religious and social rituals, access to potential mates. This point was made by Basu (1986) and many anthropologists. Blood relations are long lasting and generate multifaceted relations between individuals, from physical exchange to moral support and camaraderie. Consequently, they provide the perfect environment for enforcing informal arrangements.

Repeated game theory has also found multiple uses in explaining market institutions (e.g. Greif, 1993; Fafchamps, 2004). In particular, it has brought to light the importance
of information sharing for informal enforcement. Such contract enforcement processes are typically called reputation mechanisms or reputational contracts. Drawing inspiration from the way credit reference agencies operate, Kandori (1992) illustrates how sharing simple information about past behavior – e.g., a credit report – can be used to deter cheating in a repeated game setting. This point has been further expanded on by Taylor (2000) and Raub and Weesie (1990) to information sharing within networks. Market efficiency in general depends on the type and extent to which accurate information is shared, and on the inference economic agents draw from past action, a point made by Fafchamps (2002).

It follows that information-sharing networks play an important role in market efficiency, even when they do not directly enforce contracts, because they circulate information that is relevant to reputation mechanisms. Fafchamps (2000, 2003), for instance, provides evidence that networks facilitate market exchange. Empirical evidence on the role of networks in enforcing contracts is provided by Fafchamps and Minten (1999, 2002), among others. We have seen that family and kinship networks often circulate market relevant information, such as information about jobs, business opportunities, prices, goods for sale, house rentals and the quality of products and services. So doing, they may be instrumental to market exchange. This point has been emphasized by authors including Granovetter (1985), who argues that all market transactions are embedded in a social context.

2.3.4. Emotions

Repeated game theory is not the only possible enforcement mechanism in informal arrangements. Emotions can also be enlisted to help enforce contracts, a point that has often been overlooked by economists.

The first emotion that is instrumental in enforcing contracts is guilt: that is, the capacity for an individual to feel bad for failing to fulfill a promise. Guilt has been studied by psychologists who have demonstrated that it critically depends on upbringing. Individuals who have been repeatedly abused during childhood tend to have a guilt deficit, psychopaths representing the extreme case. As a result, the capacity to feel guilty or not tends to be inherited across generations, at least in the statistical sense, because abused parents tend to abuse their own children. It is also likely that guilt is shaped by identity and religion and, as we will discuss more in detail later in this chapter, by family ties.

Another important emotion that can be harnessed to enforce informal arrangements is shame. Unlike guilt, shame is triggered by public exposure and disapproval and thus requires the sharing of information about one’s actions. As Barr (2001) has illustrated, the capacity to resent shame varies from person to person. It may also vary across cultures. Identification with a group plays an important role in shaming. Individuals who choose to exclude themselves from the rest of the community often feel little or no shame transgressing community rules – or may even derive pride from it (Blume, 2002).

Other emotions also play an enforcement role. In many circumstances, it is not rational to retaliate after having been cheated. This means that the threat of retaliation is
not subgame perfect and hence not credible. In practice, human beings often become angry and irrational as a result of being cheated. Out of a sense of outrage, they often lash out at the culprit in ways that are self-damaging. Or they decide to sue simply to make a point, to be righted, in spite of the fact that suing costs them money. Anger brings an element of irrationality into the situation that makes the threat of retaliation credible or, at least, possible. In his book Passions within Reason, Frank (1988) makes arguments based on evolutionary games that traits like hard-wired vindictiveness can survive precisely because they allow for credible enforcement.

Altruistic sentiments represent another set of potentially strong emotions that can be harnessed for the enforcement of informal arrangements (e.g. Cox, 1987; Cox, Hansen, and Jimenez, 2004; Ravallion and Dearden, 1988). Such sentiments provide an emotional reward for doing the right thing, for helping others. As pointed out by Durlauf and Fafchamps (2005), a bit of altruism is often sufficient to eliminate free riding in prisoner’s dilemma situations. Voluntary contribution to public goods is thus easier to achieve if parties are altruistic towards each other.

2.3.5. Identification with a group

We have already discussed how family and kinship ties can be harnessed to circulate information pertinent to reputation mechanisms and to increase the cost of exclusion. We now discuss briefly the relationship between emotions, family and kinship. Altruism has been found to be stronger among genetically related individuals. This may explain why family and kin ties facilitate the enforcement of informal arrangements. Shared genes thus raise the incentive power of altruism. Identification with the family or kinship group also facilitates guilt and shame. Given this, it is not surprising to find that extended family and kinship networks play a fundamental role in most non-market exchange – and in some forms of market exchange as well.

Identification with a group can also be created artificially by providing bonding experiences such as initiation ceremonies and other kinship activities. We suspect that bonding is strongest if it is accomplished at a young age, probably around puberty and in teenage years. This tends to bond people of the same age together. Once the kin group has been socially engineered, it can serve many of the same functions as the extended family.

Other social phenomena, such as religious sects, gangs and brotherhoods can also be used to generate strong bonds and engineer a family feel. Churches often seek to tap into the emotions triggered by family relationships by using titles such as “father,” “brother,” and “sister.” The use of such titles demonstrates a desire to trigger the same emotional attachment as is found within an extended family.

2.4. Bargaining and other models of collective action

Useful insights on exchange within family networks have also been gained from the literature on household bargaining. Indeed:
Private transfers might be determined by a bargaining process. Even if they are partly altruistic, the logic of bargaining conceivably takes us far afield from the Becker framework and its attendant crowding out.

Private transfers might be the result of misanthropy rather than altruism; perhaps a powerful relative extorts money from a less powerful one.

2.4.1. Nash bargaining

A key assumption of Becker’s altruism model is that the donor does the maximizing while the recipient passively reacts. One alternative to this “donor dominates” framework is cooperative bargaining between donor and recipient, pioneered in the models of Manser and Brown (1980) and McElroy and Horney (1981). Though these models have been used mainly to analyze intra-household allocation, they can just as well be applied to inter-household transfers as well. The key aspect of bargaining, as it affects crowding out, is this:

- With bargaining, transfer derivatives are no longer minus one; crowding out is not complete.

Recall that in Becker’s model the donor dominates the decision making. But with cooperative bargaining, both donor and recipient arrive at the transfer decision jointly, usually according to the model proposed by Nash (1950, 1953).

The easiest way to see how bargaining affects transfer derivatives is to consider a variant of a very simple model by Kotlikoff, Razin and Rosenthal (1990), in which private transfers are the outcome of Nash bargaining between donor and recipient. Formally, the optimal transfer, T, is the value that maximizes

$$N = \left[U(c_d, c_r) - U_0 \right] \times \left[V(c_r) - V_0 \right],$$

where $U_0 = U(I_d, V(I_r))$ and $V_0 = V(I_r)$ are the respective “threat point” utilities of donor and recipient.\(^8\) The solution to (3) has the following comparative statics properties: $\partial c_r / \partial I_r - \partial c_r / \partial I_d > 0; \partial c_d / \partial I_r - \partial c_r / \partial I_r < 0$. In this model, even though transfers are motivated by altruism, a forced redistribution from donor to recipient does not leave individual consumption unchanged, as in Becker’s model. The reason has to do with Nash bargaining; the redistribution strengthens the recipient’s bargaining position.

\(^8\) We think that the simplicity of Kotlikoff, Razin and Rosenthal’s application of Nash bargaining makes it the easiest way to illustrate how bargaining affects transfer derivatives. Pedagogy aside, however, one might question its relevance for actual family behavior. The authors argue that their approach accounts for the recipient’s option to refuse any transfer offered by the donor. Fair enough, and we suppose that recent evidence from ultimatum games – where subjects opt for nothing rather than accept an unfair division of money (see, e.g., Fehr and Gachter, 2000) might be taken as supporting evidence. But it is one thing to turn down a 15 percent share of $100; it is quite another to walk away from a parcel of the family farm. Part of the problem is endemic to Nash bargaining; “threat points” notwithstanding, no threat is ever carried out in equilibrium. For an excellent, intuitive introduction to Nash bargaining and its drawbacks, see Kennan (1986); see also Chiappori (1988) for a critical perspective on Nash bargaining.
relative to the donor, thus raising the relative consumption of the recipient. It follows
that the transfer derivative $\partial T/\partial I_r - \partial T/\partial I_d$ is less than unity in absolute value: Nash
bargaining renders crowding out less than complete.

An alternative to Nash bargaining is the “separate spheres” bargaining model pro-
posed by Lundberg and Pollak (1993). Their model, which like Nash bargaining models
was designed to analyze intra-household allocation, can, like their Nash-bargaining
counterparts, be applied to inter-household transfers. The key innovation of Lundberg
and Pollak is to imagine that the alternative to cooperation is not complete estrange-
ment but a non-cooperative equilibrium in which individuals revert to traditional roles
that entail less-than-ideal contributions to the family. The Lundberg–Pollak approach
re-defines the “threat point” utility that accrues to individuals if the cooperation falls
apart. Applied to the generic “donor–recipient” framework above, the separate spheres
model states that the recipient’s threat-point need not be $V_0 = V(I_r)$ (which implies
severed relations between donor and recipient) but the utility that accrues from a non-
cooperative, perhaps dysfunctional, relationship with the donor. Despite the different
characterization of threat points, the bottom line with respect to crowding out is un-
changed: bargaining renders crowding out less than complete.

2.4.2. The collective model

Crowding out is likewise incomplete within the more general, “collective” model of
household behavior proposed by Chiappori (1988, 1992). Though the model is primarily
intended to describe within-household behavior, its logic can be applied to between-
household transfers. Chiappori’s model boils down to a consumption “sharing rule”
that depends upon, among other things, individual endowment incomes. The workings
of the rule itself and the variables that influence it are left unspecified; all that is assumed
is that the equilibrium allocations be efficient.

In the context of our simple example, we can specify the sharing rule $\mu = \mu(I_r, I_d)$,
where μ denotes the fraction of total household expenditures allocated to the recipient.
Such a rule implies that, in general, $\partial c_r/\partial I_r - \partial c_r/\partial I_d \neq 0$ and $\partial c_d/\partial I_r - \partial c_r/\partial I_r \neq 0$.
While there are variants of the collective model that imply transfer derivatives consistent
with income pooling – and therefore outcomes that are observationally equivalent to the
crowding out implied by Becker’s model – these transfer derivatives are not a necessary
implication of the collective model (Browning, Chiappori, and Lechene, 2004).

2.4.3. Mixed motives

Obviously, donors’ behavior can be governed by more than a single motive, a point
forcefully underscored, for example, by Lucas and Stark (1985) who propose an eclectic
model of “tempered altruism,” or “enlightened self-interest,” which “... views remit-
tances as part of, or one clause in, a self-enforcing contractual arrangement between
migrant and family. The underlying idea is that for the household as a whole it may be a Pareto-superior strategy to have members migrate elsewhere, either as a means of
risk sharing or as an investment in access to higher earnings streams. Remittances may then be seen as a device for redistributing gains, with relative shares determined in an implicit arrangement struck between the migrant and the remaining family. The migrant adheres to the contractual arrangement so long as it is in his or her interest to do so. This interest may be either altruistic or more self-seeking, such as concern for inheritance or for the right to return home ultimately in dignity” (p. 902).

To return to our central theme: How might mixed motives affect transfer derivatives? The short answer is “in myriad ways,” since there is no end to the variety of eclectic, mixed-motives models that can be specified. Accordingly, and more pointedly, let us recast the question: “Is there a mixed-motives approach that encompasses Beck-erian altruism and its predictions for crowding out?” This narrower question is not only tractable but more pertinent, in light of the importance of crowding out as a conceptual benchmark. What follows is a synopsis of the “mixed motives” analysis put forth by Cox, Hansen, and Jimenez (2004).

Before getting to the analytics, we provide the intuition for a particular “mixed motives” model, and a summary of its implications for empirical work. Imagine that, in addition to being motivated by Beckerian altruism given by Eq. (1), that the donor is also motivated by another, non-altruistic, consideration. For simplicity, and without losing anything essential, let us assume that this other motive is exchange. But before getting to exchange, consider the following example of unmitigated altruism.

Imagine that the recipient is victim of a flood. The donor, spared from the flood, provides transfers to the recipient in order to keep him alive: in technical terms, the altruist responds to the recipient’s enormous, post-flood marginal utility of consumption.

To continue: the donor hears news of an impending food shipment from a relief agency. If the shipment gets through to feed the recipient, the donor will be happy and relieved. Should the shipment not arrive, the donor stands ready with large financial transfers. In the parlance of the altruism model, $\partial T/\partial I_r$ is negative and large in absolute value, where I_r includes the value of the food shipment. There is no exchange motive at the margin; in this matter of life and death, consideration of repayment is decidedly beside the point.

Fast-forward: The recipient has recovered fully from the flood, now long past. In terms of the model, I_r is at its pre-crisis level – a value too large, say, for the donor’s altruistic transfer motive to be operative. Nevertheless, the donor still makes transfers to the recipient, but they now are given in exchange for in-kind services that the recipient provides to the donor. The transfer derivatives associated with these are much less pronounced than the large negative one associated with altruism. Indeed, as we saw above, $\partial T/\partial I_r$ might even be positive over some values of I_r.

The upshot is that with mixed motives the relationship between I_r and T need not be linear, even though Beckerian altruism is part of the mix. Indeed, the relationship need not even be monotonic. An illustration is provided in Fig. 1, drawn for a fixed value of I_d. When recipient incomes fall below the cutoff \bar{I}_r, the donor’s motive is altruistic; transfer derivatives are governed by Beckerian altruism and crowding out is complete. But with $I_r \geq \bar{I}_r$, the altruistic transfer motive is no longer operative. Transfers still take
Figure 1. The non-linear relationship between private transfers and recipient income that can arise in a model with a mixture of altruistic and other motives for private transfers.

place but are now exchange motivated, with different transfer derivatives (Cox, Hansen, and Jimenez, 2004). The primary empirical motivation of the mixed motives approach is that the estimation of transfer derivatives entails rather complex functional forms; the simple linear transfer function implied by Beckerian altruism alone is misspecified. Cox, Hansen, and Jimenez (2004) find evidence supportive of the mixed-motives approach; a detailed discussion of their findings is deferred to Section 3.

2.4.4. Coercion

Private transfers have thus far been characterized either as altruistic giving or as part of a two-way exchange. But how about taking as an alternative to giving or exchange? Udry (1996) cites the practice of domestic violence in West Africa as prima facie evidence against Pareto Optimality in household allocations; and Bloch and Rao (2002) present direct evidence of the role violence plays in such allocations in their case study of a potter community in South India.

Becker (1993) has worked out a simple model of coercion\(^9\) that captures much of the essence of the problem. Consider the canonical donor–recipient framework. Imagine that despite being altruistic toward the recipient, the donor’s transfer motive is inoperative, so that his intended transfers, \(T\), are zero. Suppose that this “donor” – the word is now in quotes since private transfers will flow in the opposite direction – has the ability

\(^9\) Which he calls “preference formation.”
to extort a gift, g, from the “recipient” by spending resources, x, in order to make the latter feel guilty or fearful. Extortion works if these unpleasant feelings, which Becker appends to the recipient’s utility function as $-G(x, g)$, are assuaged by increases in g, (i.e., $G_g < 0$) and if extortion intensifies this effect ($G_{xg} > 0$).

As one might guess, the income effect in this model is different from altruistic crowding out. For instance, an increase in I_r can act like a red flag in front of a bull for the extortionist, prompting an increase in x.10 Of all the possible motivations for familial transfers, coercion is by far the least studied, likely because of the scarcity of information on things like violence or other forms of familial pressure; thus family conflict represents a potentially valuable area for further research.

2.4.5. Village-level risk-sharing

More than just two people can pool their resources, obviously; plus, there are many ways other than private transfers for people to cope with the vicissitudes of economic life. The so-called “village risk sharing” or “perfect markets” approach pioneered by Townsend (1994) adds these considerations to analyses of networks of family and friends.

What are the implications of the group-risk-sharing perspective with regard to crowding out? How do they relate to our starting point, the Beckerian altruism model? The two approaches share an important prediction, which is that individual consumption depends not on individual income but on aggregate income – only now the aggregation is over more than just two people – it is over all households in the village. But the approaches part ways when it comes to transfer derivatives, because private transfers are not the only means of redistributing incomes or coping with idiosyncratic income risk, that is household-specific shocks that affect its current resources. The perfect markets approach embodies the myriad ways that households can adjust to income fluctuations, including but not limited to private transfers: the use of formal and informal credit, adjustments to savings, changes in labor supply, the timing of durable purchases and asset sales, reliance on formal safety nets, and so forth.

As in the collective model, and unlike Becker’s model, no single member of the group dominates decision-making: given the aggregate income of the group, individual consumption is determined by a “Pareto weight” analogous to the sharing rule in the collective model. The addition of degrees of freedom – more households, more ways to finance consumption – breaks the strict relationship between private and public transfers predicted in Becker’s model. Consequently, much of the empirical attention in the risk-sharing literature has been focused not on private transfers but on the connection between individual consumption, individual income and the aggregate income of the risk sharing pool. The model’s key prediction is that only income of the risk sharing pool, not individual income, should matter for individual household consumption.

10 Bloch and Rao indeed find that domestic violence against wives is fueled by the perpetrator’s desire to extort money from his in-laws.
Ch. 58: Extended Family and Kinship Networks: Economic Insights and Evolutionary Directions

3733

The result is a cross-sectional analogue of the implication of the life-cycle/permanent income hypothesis that permanent income – not current income – determines current consumption.

3. Empirical evidence on private inter-household transfers and risk sharing

3.1. Crowding out

So much for theories of crowding out; what is the available evidence? There has been a boom in the number of empirical articles on private inter-household transfers in the past 15 years or so. Much available evidence is consistent with partial crowding out – that is, transfer derivatives that are substantial enough that they probably should merit the concern of policymakers – but the typical study does not produce estimates large enough to be consistent with complete crowding out as predicted by Becker’s model. Several studies estimate transfer derivatives in the range of 20 or 25 cents on the dollar. Empirical transfer derivatives, however, cover a wide range: a few are close to being consistent with complete crowding out while others suggest hardly any effect at all.

A complete accounting for differences in estimated transfer derivatives would be a daunting task, because so many things differ from one study to the next, for instance: the details of how private transfer information is collected, how private transfers are defined, how transfer functions are specified, how much detail is available on the characteristics of potential recipient and donor households, the priorities given to the various econometric issues, and the institutional settings of the individual countries. Nonetheless, the surge of empirical work on private transfers in developing countries during the past decade and a half has contributed much to our understanding of crowding out, most importantly by demonstrating how seldom complete crowding out has appeared in the data. Additionally, this work has afforded us a much clearer picture of future research directions and needs.

So what does the recent empirical literature tell us about crowding out? Most of the work indicates that the necessary background conditions for crowding out to be a possibility are indeed in place in most developing countries. One necessary condition is that private inter-household transfers be widespread and large, for the simple reason that, were this not the case, there would be little to be crowded out. Another necessary condition is that private transfers function like means-tested public income redistribution by flowing from better off to worse-off households. Recent work suggests that, in most places, both conditions hold.

3.1.1. The prevalence of private inter-household transfers

How widespread are private transfers between households? While there is no single number that captures the idea succinctly, we do our best to summarize, with caveats to follow. It is a safe bet that, across the spectrum of developing countries that have been
studied, the modal percentage of households involved in private transfers in a given year (either as recipients, donors, or both) is somewhere around 40 percent. Some countries report much lower involvement rates (i.e. the fraction of households giving or receiving or both) and some report much higher rates: the minimum is perhaps around 10 percent, and the maximum at least 90 percent. So these numbers indeed suggest a great deal of private-transfer activity across households.

But having stuck our necks out by providing such a summary, we are compelled to qualify the above statement along several lines:

• There is no generally accepted, standardized way to collect information about private transfers. Hence, many of the conclusions about the prevalence of transfers (as we will see below) may merely be the consequence of how the data are collected. For instance, the more questions about private transfers a survey contains, the higher the survey’s reported involvement rates.

• There is no generally accepted definition of what constitutes a private inter-household transfer. For instance, some surveys count informal loans between households as private transfers, others do not. Whether such loans should indeed be counted – and indeed how to distinguish a loan from a gift – entails subtle judgment calls that are not so easily resolved.

• There is no generally accepted definition of what “inter-household” means. Suppose someone who ordinarily lives in the household temporarily resides elsewhere, and remits a sum of money to that household. Typically this transfer is treated as an inter-household transfer, but one could imagine that in cases of extremely short absences it might be more appropriately categorized as an intra-household transfer.

• Even if the above problems were to someday be solved, there would no doubt remain further difficulties on several fronts, including cognition, culture and stigma. It is not clear what the optimal time frame would be for efficient recall of private transfers, for example. Definitions of what constitutes a loan versus a gift would surely vary from one culture to the next. In some cultures there may be stigma attached to (for instance) receiving money from one’s children; in others, there may be stigma attached to not receiving money from one’s children!

• Nearly all surveys and studies of private transfers deal with realized, rather than potential, private transfers. But it is actually the latter that determines, in the language of Barro (1974), whether the transfer motive is operative. Perhaps I have a brother who stands ready to help me in case of emergency, but that emergency never happens. Nonetheless I am insured. Such potential transfers are likely crucial, but are missed by standard surveys.

Cox, Galasso, and Jimenez (2006) studied private inter-household transfers in a diverse cross section of developing countries for which nationally representative surveys with requisite information was available, in roughly comparable form (all surveys were from the World Bank’s Living Standards Measurement Surveys (LSMS)). The cross section contains information reported between 1994 and 1998 from 11 countries from around the world: Albania, Bulgaria, Jamaica, Kazakhstan, the Kyrgyz Republic, Nepal, Nicaragua, Panama, Peru, Russia and Vietnam. Private transfers are defined as monetary
gifts and the money value of in-kind transfers given and received by households (inter-
household loans were excluded). Per LSMS definition, individuals absent from the
household longer than three months during the past year were not counted as household
members, nor were boarders or lodgers. Most countries (seven) queried respondents
about transfers during the past 12 months, three asked about transfers during the last
month, and one asked about transfers from the past three years.\footnote{The World Bank's Living Standards Measurement Surveys gather a wide range of data from households in developing countries in an attempt to better understand and assess the well-being of those households and the effect of public policies on living conditions in those countries. More information can be found at http://www.worldbank.org/LSMS/}

Five of the 11 countries had involvement rates of 40 percent in private transfers; 7 of
the 11 had involvement rates ranging between 30 and 50 percent. But the definition
of private transfers makes a difference in these calculations. For instance, Vietnam’s
private-transfer involvement rate based on gifts, calculated from that country’s LSMS
for 1998 was 37 percent, but the comparable figure adding in inter-household loans was
52 percent (Cox, 2004).

Further, it is not clear whether what a household calls a “loan” does not contain at
least some element of a gift if, for example, it is given interest free. Conversely, what is
reported as a gift might in fact be given in expectation of some future reciprocal help,
in which case it might be more aptly conceptualized as a loan.

Several other recent studies of private transfers for which involvement rates are
readily available indicate significant proportions of households involved with private
transfers. These include: Amelina, Chirbuca, and Knack (2004) for Romania; Cox and
Jimenez (1998) for urban poor in Cartagena, Colombia; Cox, Jimenez, and Okrasa
(1997) for Poland; Cox, Hansen, and Jimenez (2004) for the Philippines; de la Briere
et al. (2002) for the Dominican Sierra, Dominican Republic; Frankenberg, Lillard, and
Willis (2002) for Indonesia; Hoddinott (1992) for elderly households in Western Kenya;
and Stillman (2004) for Russia; LaFerrara (2003) for Ghana; Lee, Parish, and Willis
(1994) for Taiwan; Lillard and Willis (1997) for Malaysia; Maitra and Ray (2003)
for South Africa; McKernan, Pitt, and Moskowitz (2005) for Bangladesh; Miller and
Paulson (2000) for Thailand; Raut and Tran (2005) for Indonesia and Udry (1994) for
Nigeria.

In a few cases, however, the incidence of private transfers between households ap-
pears low. For instance, Cox, Galasso, and Jimenez (2006) found only an 11 percent
involvement rate for Albania, despite the fact that respondents there were asked to re-
port any transfers received or given during the past three years. Albarran and Attanasio
(2002) found that only 11 percent of their Mexican sample reported receiving trans-
fers, and conjectured that the low percentages were due to the short reporting window
of 30 days. Secondi (1997) found that only 6 percent of a sample of rural Chinese
households reported receiving transfers in 1989, but “transfers” carried the connotation
of “financial support.” When information about receipts of gifts is added, the rate of
transfer inflows rises to 30 percent. These findings underscore the earlier points about
the relevance of transfer definitions for assessing the pervasiveness of private transfer
networks.

How about the actual money value of the transfers? Available evidence indicates
that, in the modal case, there is indeed much in private transfers that could be crowded
out. For instance, consider the modal four countries in terms of private transfer involve-
ment rates (Kazakhstan, the Kyrgyz Republic, Russia and Vietnam) from the 11-country
study of Cox, Galasso, and Jimenez (2006). For these countries, the percentage of
private transfer receipts in total household income ranges from 6 to 8 percent for all
households, including non-recipients. Among sub-samples of recipient households, the
percentage of private transfers in total household income range from one-quarter to
one-third. So both the prevalence and size of private transfers can indeed be substantial.

Despite advances in knowledge about the scope of private transfer networks that re-
cent data collection and analysis has provided, there remains a conceptual flaw (which
we believe could be easily remedied) in how information about transfers is gathered.
Nearly all surveys tend to focus on realized rather than potential transfers. Yet the latter
are what might guide the household’s behavior. Knowing that my brother stands ready
to bail me out of a jam can affect my savings and investment decisions, and though
it may turn out that trouble never finds me, nonetheless I can depend on an operative
transfer motive. Such potential transfers might function like precautionary savings, yet
they may be invisible to researchers using standard survey tools.

Not that questions about potential transfers are entirely absent from existing sur-
veys. For instance, the survey of urban poor in Cartagena, Colombia undertaken by
Bamberger et al. (1992) and used in Cox and Jimenez (1998) asked respondents to re-
port the number and financial status of network members, where a network was defined
as “a set of individuals or households who regularly assist each other through the provi-
sion of money, goods, services or the provision of accommodation.” Such information
is useful for identifying households who might rely on networks even if they have not
received help of late.

Much more could be done, probably at low cost, to obtain higher quality information
concerning the scope of operative inter-household transfers in developing countries.
Consider the following simple survey question from the first wave of the United States
Health and Retirement Survey (HRS), a household survey of persons approaching re-
tirement age. Respondents were asked the following:

Suppose you (and your (husband/wife/partner)) ran into severe financial problems
in the future. Do you have relatives or friends who would be both willing and able
to help you out over a long period of time?

A significant fraction of households not currently receiving private transfers nonethe-
less answered “yes” to this question, suggesting that a possibly large gap might exist

12 Bamberger et al. (1992, p. 2-1).
between realized and potential transfers. So, the question conceivably conveys valuable information about the extent of operative transfers. Further, the question is simple and direct; it would seem rather straightforward and inexpensive to graft it onto, for instance, an LSMS survey module dealing with inter-household transfers.

Further, researchers could do more to explore innovative questions that are already available in existing surveys. For instance, the second and third waves of the Indonesian Family Life Survey (IFLS) contain innovative questions concerning decision-making power regarding familial transfers. Specifically, respondents were asked:

In your household, who makes decisions about: giving money to your parents/family ... [and] ... giving money to your spouse’s parents/family.

In addition, the community questionnaires contain similar questions asked of community leaders regarding traditions and practices concerning which family members make decisions about private transfers.

3.1.2. Evidence on transfer derivatives and crowding out

While the existence of widespread private transfers is necessary for crowding out, it is far from sufficient. To cite a trivial example: if transfers were determined by strict cultural rules that specified fixed monetary amounts to be given irrespective of income or other events, crowding out would be nil even with ubiquitous private transfers. So we turn to empirical evidence on transfer derivatives. As noted above, the modal transfer derivative – around 20 to 25 cents on the dollar – is large enough that policymakers and academics should probably sit up and take notice, but findings of complete crowding out, while noteworthy, are nonetheless rare. (We discuss them later on, and we also summarize much of the recent empirical findings in Table 1.)

Before getting to details, and to continue our broad-brush summary of the empirical literature on private transfers, we note that in many ways it is analogous to the empirical literature on United States labor supply in the late 1970s and early 1980s. Back then, empirical researchers contributing to that literature took diverse theoretical and empirical approaches to the data, and (perhaps not surprisingly) produced a spate of sometimes dramatically divergent estimates. Labor economists then turned their attention to unifying and resolving conflicting estimates in the literature, as in Killingsworth’s (1983) classic early study, which addressed a variety of modeling and econometric issues in order to understand what was driving divergent estimates. The empirical private transfers literature awaits such a full-scale unification. At the end of this section, we point out a recent paper that is noteworthy for attempting this for private transfers, and encourage further work along these lines. For now, though, we note that the findings summarized below are generated from a variety of methods, and that some papers pay much more attention to certain econometric issues (e.g., endogeneity of income, selection bias, potential non-linearities) than others.

Since this section is primarily about income effects, we need to settle on convenient terminology. We will use the word “income” to denote “pre-private-transfer income,” or
<table>
<thead>
<tr>
<th>Country and segment of population</th>
<th>Year</th>
<th>GDP per capita (2000 USD)</th>
<th>Percentage of households</th>
<th>Mean transfer amt. as a percentage of mean income</th>
<th>Transfer responsiveness to income</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Receiving</td>
<td>Giving</td>
<td>Receiving</td>
<td>Giving</td>
</tr>
<tr>
<td>Albania</td>
<td>1996</td>
<td>983</td>
<td>8.8</td>
<td>2.5</td>
<td>70.4*</td>
<td>15.4*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14.6</td>
<td>1.7</td>
<td>48.3*</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.7</td>
<td>5.0</td>
<td>57.6*</td>
<td>–</td>
</tr>
<tr>
<td>Botswana (remittances)</td>
<td>1978–1979</td>
<td>918*</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>Rural</td>
<td>1994</td>
<td>211</td>
<td>29.9</td>
<td>20.4*</td>
<td>33.3*</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>225</td>
<td>33.6</td>
<td>15.0</td>
<td>14.1</td>
<td>27.0</td>
</tr>
<tr>
<td></td>
<td>Urban</td>
<td>1994</td>
<td>22.7</td>
<td>18.6</td>
<td>26.5</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>225</td>
<td>22.7</td>
<td>18.6</td>
<td>26.5</td>
<td>9.0</td>
</tr>
<tr>
<td>China (rural hh cross-China)</td>
<td>1988</td>
<td>347</td>
<td>29.9</td>
<td>–</td>
<td>9.3</td>
<td>–</td>
</tr>
<tr>
<td>Dominican Republic (receipt of remittances by farm households in Dominican Sierra)</td>
<td>1994</td>
<td>1712</td>
<td>49</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>Country and segment of population</th>
<th>Year</th>
<th>GDP per capita (2000 USD)</th>
<th>Percentage of households</th>
<th>Mean transfer amt. as a percentage of mean income</th>
<th>Transfer responsiveness to income</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Receiving</td>
<td>Giving</td>
<td>Receiving</td>
<td>Giving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Urban</td>
<td>15</td>
<td>37*</td>
<td>–</td>
</tr>
<tr>
<td>India (six villages in semi-arid tropics)</td>
<td>1977–1983</td>
<td>234*</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>India (rural informal borrowing in Northern Uttar Pradesh)</td>
<td>1981–1982</td>
<td>234*</td>
<td>17</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Indonesia*</td>
<td>1993</td>
<td>730</td>
<td>Exchange with children</td>
<td>55.2</td>
<td>43.5</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exchange with parents</td>
<td>27.9</td>
<td>53.5</td>
<td>0.5–2.0</td>
</tr>
<tr>
<td>Indonesia (parents receiving from non-cores children)</td>
<td>1993</td>
<td>730</td>
<td>–</td>
<td>20.3*</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 1 (continued)

<table>
<thead>
<tr>
<th>Country and segment of population</th>
<th>Year</th>
<th>GDP per capita (2000 USD)</th>
<th>Year</th>
<th>Percentage of households</th>
<th>Mean transfer amt. as a percentage of mean income</th>
<th>Transfer responsiveness to income</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jamaica (remittances post-Hurricane Gilbert)</td>
<td>1989</td>
<td>2894</td>
<td>36</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>−0.25*</td>
</tr>
<tr>
<td>Jamaica</td>
<td>1997</td>
<td>3140</td>
<td>52.9</td>
<td>17.5</td>
<td>17.7*</td>
<td>11.1*</td>
<td>–</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>1996</td>
<td>1021</td>
<td>27.2</td>
<td>20.3</td>
<td>29.9*</td>
<td>20.2*</td>
<td>–</td>
</tr>
<tr>
<td>Kenya (Western)* (transfers from children) to elderly</td>
<td>1988</td>
<td>442</td>
<td>87.8</td>
<td>–</td>
<td>34.0*</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>to non-elderly</td>
<td></td>
<td></td>
<td>22.1</td>
<td>–</td>
<td>4.7*</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Kyrgyz Republic</td>
<td>1996</td>
<td>240</td>
<td>33.2</td>
<td>15.6</td>
<td>32.2*</td>
<td>23.3*</td>
<td>–</td>
</tr>
<tr>
<td>Malaysia (parent/child transfers) Parents</td>
<td>1988</td>
<td>2230</td>
<td>61.5</td>
<td>23.6</td>
<td>7.8*</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Children</td>
<td></td>
<td></td>
<td>18.5</td>
<td>54.3</td>
<td>–</td>
<td>9.2*</td>
<td>–</td>
</tr>
<tr>
<td>Mexico (poor, rural areas)</td>
<td>1998</td>
<td>5513</td>
<td>10.6*</td>
<td>0.80*</td>
<td>28.9*</td>
<td></td>
<td>Between −0.23 and −1.59*</td>
</tr>
<tr>
<td>Nepal</td>
<td>1996</td>
<td>218</td>
<td>23.4</td>
<td>10.1</td>
<td>38.2*</td>
<td>17.6*</td>
<td>–</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>1998</td>
<td>736</td>
<td>20.3</td>
<td>1.1</td>
<td>29.7</td>
<td>7.8</td>
<td>–</td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>Country and segment of population</th>
<th>Year</th>
<th>GDP per capita (2000 USD)</th>
<th>Percentage of households</th>
<th>Mean transfer amt. as a percentage of mean income</th>
<th>Transfer responsiveness to income</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Receiving</td>
<td>Giving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria (rural villages informal</td>
<td>1988–1989</td>
<td>320*</td>
<td>65</td>
<td>75</td>
<td>8.5*</td>
<td>–</td>
</tr>
<tr>
<td>borrowing)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Udry (1994)</td>
</tr>
<tr>
<td>Panama</td>
<td>1997</td>
<td>3726</td>
<td>38.2</td>
<td>17.1</td>
<td>9.8* 4.5*</td>
<td>–</td>
</tr>
<tr>
<td>Peru</td>
<td>1994</td>
<td>1852</td>
<td>35.4</td>
<td>13.5</td>
<td>14.1* 8.5*</td>
<td>–</td>
</tr>
<tr>
<td>Philippines (remittances)</td>
<td>1993</td>
<td>877</td>
<td>17</td>
<td>–</td>
<td>8*</td>
<td>–</td>
</tr>
<tr>
<td>Philippines (rural villages)</td>
<td>1994–1995</td>
<td>916*</td>
<td>100*</td>
<td>100*</td>
<td>23.4* 11.1*</td>
<td>–</td>
</tr>
<tr>
<td>Philippines (rural)</td>
<td>1988</td>
<td>882</td>
<td>89</td>
<td>50</td>
<td>13.0 1.1</td>
<td>Low inc. –0.4* High inc. –0.03 Cox, Hansen, and Jimenez (2004)</td>
</tr>
<tr>
<td>Urban</td>
<td></td>
<td></td>
<td>82</td>
<td>44</td>
<td>14.3 0.8</td>
<td>Low inc. –0.39 High inc. –0.01</td>
</tr>
<tr>
<td>Poland (worker households)</td>
<td>1987</td>
<td>3053*</td>
<td>49</td>
<td>29</td>
<td>9.4 2.7</td>
<td>–0.054* Cox, Jimenez, and Okrasa (1997)</td>
</tr>
<tr>
<td></td>
<td>1992</td>
<td>2894</td>
<td>53</td>
<td>28</td>
<td>4.2 2.8</td>
<td>–0.031</td>
</tr>
<tr>
<td>informal transactions)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
Table 1

<table>
<thead>
<tr>
<th>Country and segment of population</th>
<th>Year</th>
<th>GDP per capita (2000 USD)</th>
<th>Percentage of households</th>
<th>Mean transfer amt. as a percentage of mean income</th>
<th>Transfer responsiveness to income</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Receiving</td>
<td>Giving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russia*</td>
<td>1994–2000</td>
<td>1591*</td>
<td>18</td>
<td>22</td>
<td>10* 9*</td>
<td>−0.1 (elderly hh only)*</td>
</tr>
<tr>
<td>Rural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td></td>
<td></td>
<td>25</td>
<td>24</td>
<td>9 6</td>
<td></td>
</tr>
<tr>
<td>Russian Federation</td>
<td>1996</td>
<td>1564</td>
<td>24.4</td>
<td>23.4</td>
<td>40.9* 30.3*</td>
<td>−</td>
</tr>
<tr>
<td>South Africa*</td>
<td>1994</td>
<td>2846</td>
<td>21.9</td>
<td>3.5</td>
<td>− −</td>
<td>Earned Income: Above poverty level: 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Below poverty level: −0.07*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Public Pensions: Above poverty level: 0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Below poverty level: −0.09*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Women: −0.30*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Men: −0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(responsiveness of remittances to pension increase between 1989 and 1992)</td>
</tr>
<tr>
<td>South Africa</td>
<td>1989</td>
<td>3131</td>
<td>68</td>
<td>–</td>
<td>25 −</td>
<td></td>
</tr>
<tr>
<td>(remittances going to pensioners in Venda province – low income)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1992</td>
<td>2842</td>
<td>70</td>
<td>–</td>
<td>12 −</td>
<td></td>
</tr>
<tr>
<td>(exchanges of support between sons, daughters and parents > 50 years)</td>
<td></td>
<td></td>
<td>Daughters: 21</td>
<td>Daughters: 70</td>
<td>− −</td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>Country and segment of population</th>
<th>Year</th>
<th>GDP per capita (2000 USD)</th>
<th>Percentage of households</th>
<th>Mean transfer amt. as a percentage of mean income</th>
<th>Transfer responsiveness to income</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Receiving</td>
<td>Giving</td>
<td>Receiving</td>
<td>Giving</td>
</tr>
<tr>
<td>United States</td>
<td>1988</td>
<td>27362</td>
<td>20.2</td>
<td>13.3</td>
<td>5.7</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>1989</td>
<td>28062</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexican-Americans</td>
<td></td>
<td></td>
<td>4.8</td>
<td>10.1–13.3*</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mexican immigrants</td>
<td></td>
<td></td>
<td>3.1</td>
<td>14.5–24.7</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(support to/from relatives only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vietnam</td>
<td>1993</td>
<td>265</td>
<td>20.3</td>
<td>16.5</td>
<td>32.0*</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>364</td>
<td>23.2</td>
<td>18.8</td>
<td>25.3*</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>37.3*</td>
<td>24.2*</td>
<td>32.7*</td>
<td>–</td>
</tr>
</tbody>
</table>

- Percentage of households receiving or giving transfers in the past year, unless otherwise noted.
- Mean transfer amounts as percentage of mean income are calculated using mean transfer amount for those who are recipients/donors divided by mean post-transfer income for total sample, unless otherwise noted.
- Transfer Responsiveness to Income: Answers the question, if income increases by 1 unit, by how many units do private transfer inflows increase or decrease?
- GDP per capita from World Bank World Development Indicators, 2000 USD.

Albania
- *May include loans, as loans are not asked about explicitly.
- *Mean transfer amounts as percentage of mean income are calculated as noted above for net recipients and net givers only.
Table 1
(continued)

Bangladesh
- *GDP per capita for 1999.
- *Mean of gift or loan as percentage of total household income is calculated using mean post-transfer household income for recipients only, not mean income overall.
- *TRI is responsiveness of combination of gifts and informal loans.

Botswana
- *GDP per capita for 1978.
- *TRI is an elasticity – a 1% increase in income would result in a 0.011% increase in remittance.

Bulgaria
- *May include loans, as loans are not asked about explicitly.
- *Mean transfer amounts as percentage of mean income are calculated as noted above for net recipients and net givers only.

Burkina Faso
- *Mean gift as percentage of total household income calculated for those who are givers and receivers ONLY. Mean income amounts calculated separately for rural and urban areas.
- *TRI calculated using splines and instrumenting for income. Results for rural areas reported for the 2nd income quartile, and results for urban areas reported for the 3rd income quartile. (Inconsistency due to lack of significance of some of the results.)

China
- *TRI calculated by OLS for those families reporting a transfer. Includes transfers from families and gifts from non-relatives. Transfers from family members alone has a responsiveness of 0.033.

Dominican Republic
- *TRI depends upon specification of regression, ranging from −0.01 for the OLS estimates (not significant), to 0.09 for the “Censored Least Absolute Deviations” estimate.

El Salvador
- *Transfer amount as percentage of income uses mean pre-remittance household income.

Ghana
- *GDP per capita from 1989.
- *Informal loan amount as percentage of mean household expenditure, not income.

India (Rosenzweig, 1988)
- *GDP per capita from 1980.
- *TRI is transfer responsiveness to deviations in “household full-income,” coefficient from specification (1) in Table 4. Other specifications result in much lower coefficients.

(continued on next page)
Table 1
(continued)

India (Kochar, 1997)
- *GDP per capita from 1982.

Indonesia (Frankenberg, Lillard, and Willis, 2002)
- *Nationally representative sample of married couples with at least one non-coreresident child and/or one non-coreresident parent.
- *TRI is an elasticity: 1% increase in father’s wages results in 0.132% increase in transfers from children to parents.

Indonesia (Raut and Tran, 2005)
- *Transfer as percentage of income is calculated as mean amount received/mean parental income.
- *TRI is the part of the total transfer derivative attributable to change in the recipient’s income. When the total transfer derivative is calculated, TRI = −0.956.

Jamaica (Clarke and Wallsten, 2003)
- *TRI in this case is transfer responsiveness to a dollar’s worth of hurricane damage (comparable to a decrease in income).

Jamaica (Cox, Galasso, and Jimenez, 2006)
- *Mean transfer amounts as percentage of mean income are calculated as noted above for net recipients and net givers only.

Kazakhstan
- *May include loans as loans are not asked about explicitly.
- *Mean transfer amounts as percentage of mean income are calculated as noted above for net recipients and net givers only.

Kenya
- *Sample of 160 households in Western Kenya sublocation of Karateng (76 elderly, defined as age 60 or older, and 84 non-elderly).
- *Mean transfer amounts as percentage of mean income calculated for recipients only. Timeframe not explicitly given, but assumed over the past year.

Kyrgyz Republic
- *Mean transfer amounts as percentage of mean income are calculated as noted above for net recipients and net givers only.

Malaysia
- *Receiving figure is mean percentage of parents’ hh post-transfer income received as a gift from children, for entire sample of parents (not just recipients).
- *Giving figure is percentage of children’s hh income given to parents when both husbands’ and wives’ parents are alive, for the entire sample of children (not just donors).

Mexico
- *Percentage having received or given a transfer from friends, relatives or migrants in last month only.
- *Mean transfer amounts as percentage of mean income calculated as noted above, but only for prior month.
- *TRI calculated using the effect on transfers at mean PROGRESA grant size (250 pesos) from migrants (−0.2228) and friends/relatives (−1.588).

Nepal
- *Mean transfer amounts as percentage of mean income are calculated as noted above for net recipients and net givers only.

Nicaragua
- *Mean transfer amounts as percentage of mean income are calculated as noted above for net recipients and net givers only.
(continued on next page)
<table>
<thead>
<tr>
<th>Country</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Nigeria | *GDP per capita from 1989.
*Amount borrowed reported as percentage of household wealth, not income. |
| Panama | *May include loans, as loans are not asked about explicitly.
*Mean transfer amounts as percentage of mean income are calculated as noted above for net recipients and net givers only. |
| Peru | (Cox, Eser, and Jimenez, 1998)
*GDP per capita from 1986.
*TRI based on splines approach dividing sample into low income and high income households. |
| Peru | (Cox, Galasso, and Jimenez, 2006)
*Mean transfer amounts as percentage of mean income are calculated as noted above for net recipients and net givers only. |
| Philippines | (Rodriguez, 1996)
*Represents 8% of total Philippine household income, according to National Statistics Office. |
| Philippines | (Fafchamps and Lund, 2003)
*GDP per capita from 1995.
*Percentage of households receiving/giving transfers includes gifts and loans. |
| Poland | *TRI based on splines estimation with estimated cutoff points. |
| Romania | *Percentages are of net recipients and donors, calculated on pre-transfer income, not gross. |
| Russia | *All values are for the month prior to the interview.
*GDP per capita for 1997.
*Transfers as percentage of mean income are overall mean transfer/overall mean income for each urban/rural category. |
| | *TRI results from OLS regression that only includes income from elder pensions, so responsiveness of transfers to income only given for single-generation elderly households. |

(continued on next page)
Table 1 (continued)

Russian Federation
- *May include loans as loans are not asked about explicitly.
- *Mean transfer amounts as percentage of mean income are calculated as noted above for net recipients and net givers only.

South Africa (Maitra and Ray, 2003)
- *South African time period covers last 30 days, not last year.

South Africa (Jensen, 2004)
- *TRI figured in a differences in differences estimation, where men and women were estimated separately.

Thailand
- *Remittances as percentage of income recorded for previous month, not previous year.

United States
- *TRI from the tobit estimates of transfers received.

United States (Mexican American and Mexican Immigrant populations)
- *The ranges for giving are based on the numbers reporting giving to different categories of relatives.

Vietnam (Cox, Galasso, and Jimenez, 2006)
- *GDP per capita from 1998.
- *Mean transfer amounts as percentage of mean income are calculated as noted above for net recipients and net givers only.

Vietnam (Cox, 2004)
- *Mean transfer amount as percentage of mean income for recipients only.
- *Loans included in addition to gifts.
what is sometimes referred to as “endowment income,” that is, the value of household resources. Unless otherwise noted, “income” refers to current household pre-private-transfer income.

One rather coarse stylized fact about inter-household private transfers is that there is evidence that they act like means-tested public transfers, in the following sense: private transfers appear to flow from high- to low-income households in nearly every country for which such information is available. For instance, in their 11-country study of LSMS data, Cox, Galasso, and Jimenez (2006) find that for 10 out of the 11 countries, the average incomes of private-transfer donors exceeds that of recipients – and usually by a wide margin. And in most of the countries in their sample, the share of income accruing to the lowest quintile increases markedly in percentage terms after private transfers are figured into total household income.

So what does the recent literature tell us about the responsiveness of private transfers to a one-dollar increase in public transfers? One approach is to take the dozen papers for which it is straightforward to obtain the estimated value of the transfer derivative $\frac{\partial T}{\partial I_r} - \frac{\partial T}{\partial I_d}$ or the estimated partial derivative $\frac{\partial T}{\partial I_r}$. A ranking of those estimates puts both the median and mode at the -0.25 to -0.30 range. Consider three studies from the middle of the distribution: Clarke and Wallsten (2003), Jensen (2004) and McKernan, Pitt, and Moskowitz (2005).

Clarke and Wallsten (2003) avail themselves of a natural experiment – Hurricane Gilbert, which struck Jamaica in 1988 – to estimate the impact of exogenous damage-related income shocks on inflows of remittances. Using panel data created from the Jamaican Survey of Living Conditions (an LSMS-style survey), they found that remittances increased 25 cents for every dollar’s worth of damage inflicted by the hurricane. A potential problem with this episode is that the estimates might not provide much information about crowding out if private donors respond differently to hurricane-related shocks than they would to income changes from tax and public-transfer policies.

Jensen (2004) exploits a natural experiment generated from public policy – South Africa’s dramatic post-apartheid expansion in public pension benefits – to estimate the response of private transfers to changes in public transfers, and finds that a one-rand increase in pensions is associated with a 0.26–0.30 rand reduction in remittances received from children living away from home.

The last “modal” study, by McKernan, Pitt, and Moskowitz (2005) also uses policy-generated income variation – this time from credit programs targeted to the poor in Bangladesh – to investigate trade-offs between program-provided credit versus informal credit-plus-private-transfers. They find that a 100 Taka increase in female program

13 The only country in their sample that did not conform to this pattern was Albania.

Ch. 58: Extended Family and Kinship Networks: Economic Insights and Evolutionary Directions

credit reduces net private transfers and informal loans by 25 Taka; the equivalent figure for men is 31 Taka.

It would be misleading to conclude from these papers that any sort of consensus exists concerning crowding out; the actual range of estimates in the literature is exceedingly wide. For instance, a few of the dozen studies cited above (Cox, Eser, and Jimenez, 1998; Lucas and Stark, 1985; and Secondi, 1997) estimate positive values for $\partial T/\partial I_r$. At the other end of the spectrum, some of the estimates of the transfer derivative $\partial T/\partial I_r - \partial T/\partial I_d$ estimated in Raut and Tran (2005) are exceedingly close to the value of -1 predicted by Becker (1974).

Nor is the current state of the art sufficiently developed to easily reconcile such differences (though recent developments suggest that the literature might be headed in this direction). For instance, Frankenberg, Lillard, and Willis (2002) use the same data set as Raut and Tran (2005) (the 1993 IFLS) but obtain estimated income effects nowhere near as large as the latter. A possible reason is that Raut and Tran use the Altonji–Ichimura method for controlling for sample selection bias (Altonji and Ichimura, 2000; Altonji, Hayashi, and Kotlikoff, 1997). This estimator accounts for the inherent nonseparability between incomes and preferences in the altruism model of transfers. Failing to account for such nonseparability can bias estimated transfer derivatives away from the strong effects implied by altruism. Intuitively, imagine that parents vary in their (unobservable) altruism toward their children. A child whose income is large relative to that of his parents but nonetheless still receives a transfer is more likely to have especially generous parents, who accordingly would be prone to give especially large transfers. Failing to account for this non-linear, nonseparable source of selection bias generates estimated values of $\partial T/\partial I_r - \partial T/\partial I_d$ that are biased toward zero, because they fail to control for the spurious effects generated by the interplay between unobserved heterogeneity in parental altruism, on the one hand, and past and current transfers and incomes, on the other.\(^\text{15}\)

Another source of non-linearity, referred to in the earlier discussion of theory, is the possibility that more than one motive might govern private transfer behavior, and that large transfer derivatives might prevail only for households whose incomes are low enough to prompt assistance motivated by unvarnished altruistic sentiments (as opposed to, say, a desire for reciprocal assistance). Such a model implies, for example, that $\partial T/\partial I_r$ would be negative and large in absolute value for low values of I_r, but might well be negligible for higher values of I_r. Cox, Hansen, and Jimenez (2004) estimate such a non-linear model for the Philippines, and find rather pronounced non-linearities consistent with a mixed-motives approach to private transfers. The non-linear transfer function takes the form of a spline, where the knot point of the spline is itself a parameter to be estimated. They find striking differences in the estimated values of $\partial T/\partial I_r$.

\(^\text{15}\) The authors generalize the maximum likelihood expression for Tobit taking into account the fact that explanatory variables implicated in the calculation of transfer derivatives – notably, donor and recipient incomes – and donor altruism are not additively separable (see Altonji, Hayashi and Kotlikoff, (1997, pp. 1127–1131; and Altonji and Ichimura, 2000).
by I_r: about -0.40 for poorer households (29th percentile and below for urban households, 20th percentile and below for rural households) and negligible estimated values of $\partial T/\partial I_r$ for the others. They also show that failing to account for non-linearities can generate misleadingly tepid estimates of $\partial T/\partial I_r$; a linear transfer function generates values between -0.02 and -0.03.

Maitra and Ray (2003) find corroborating evidence for South Africa, namely, that public pensions appear to crowd out private transfers among poor households, whereas the two forms of transfer appear to complement each other for the non-poor.

One problem with the study of Cox, Hansen, and Jimenez (2004) and several related studies of inter-household private transfers is that no matched information on transfer donors and recipients is available. This data deficiency can lead to potentially serious problems of omitted variable bias, which tend to stack the cards against finding evidence for crowding out. For instance, in the case of altruistically motivated intergenerational transfers, positive correlation of incomes of parents and children would tend to bias estimated values of $\partial T/\partial I_r$ toward zero. In the case of the Cox, Hansen, and Jimenez (2004) paper, the possibility of such bias makes the estimates that much more noteworthy, and the authors suggest that Becker’s (1974) crowding out conjecture, so many times rejected empirically, should not yet be ruled out of court. Further, they argue that, paradoxically, the most appropriate testing ground for crowding out might well be laissez-faire economies such as the Philippines, whose low rates of social spending have (perhaps) not yet rendered crowding out a fait accompli.

Another piece of evidence to suggest that income effects of private transfers might not be reduced to a single number comes from simple descriptive panel evidence for Vietnam, using LSMS data that initially surveyed households in 1993 and then re-surveyed them in 1998 (Cox, 2004). Indeed, there is evidence of extreme household-specific heterogeneity in transfer derivatives. The panel data were used to construct a simple, household-specific transfer derivative, $\Delta T/\Delta I$, where ΔT denotes the change in net transfer receipts (excess of inflows over outflows) between 1993 and 1998, and ΔI denotes the change in per capita household income. The empirical distribution of $\Delta T/\Delta I$ spanned an exceedingly wide range, from -0.75 at the 10th percentile to 0.29 at the 90th percentile. The first figure is in line with received wisdom about private transfers, since changes in transfers act to offset changes in income. But the latter figure is at odds with that story, and indeed indicates that private transfers can have a destabilizing effect on total household income.

So while we have learned much about crowding out in the past 15 years or so, mounting evidence points to disparities in estimated private-transfer income effects that need explanation – disparities between households within a country, disparities between countries, disparities between studies using the same data set for the same country, and so on.

With this thought in mind, we single out two papers in the literature that we think are exemplary for pushing the frontier of research on crowding out. The first is a study of private transfers in Burkina Faso by Kaziang (2006). He finds little evidence for crowding out in this country, but what is noteworthy here is not so much the find-
ings themselves but the approach. What is attractive about this paper is that it takes rather standard data (surveys similar to the World Bank’s LSMS) and applies a painstaking econometric approach that seeks to address a variety of estimation issues at once, including selection bias (making use of the Altonji–Ichimura estimator), potential endogeneity of income, and non-linearities in income effects. As such, the paper comes closest to embarking on what Killingsworth (1983) did for the empirical labor supply literature, which is to establish some benchmarks for econometric “best practice.” As the literature on private transfers moves ahead, such benchmarks will prove increasingly valuable, so that researchers and policymakers wishing to see the big picture will be able to focus on differences in estimated crowding out attributable to fundamentals (such as country differences in social safety nets) as opposed to those due to modeling issues (such as the failure to properly model selection bias).

A second exemplary paper – a Romanian case study by Amelina, Chirbuca and Knack (2004) – pushes a distinctly different edge of the research frontier on crowding out by undertaking truly innovative and path-breaking data collection. This effort, undertaken under the auspices of the World Bank in 2002, produced the Romanian Public/Private Transfers and Social Capital Survey. What this study – and survey – does that is different and valuable is that it goes beyond a narrow focus on private inter-household transfers to seek detailed information about so-called “social capital” and civic life: that is, involvement in formal private associations and clubs, and participation in collective action and local government decision making. In a nutshell, the study expands the purview of private transfers from the extended family into the neighborhood, and, from there, into local politics and beyond. The survey attempts to measure perceived corruption and trust in local government, for instance. Further, the survey supplements standard questionnaires by engaging in open-ended discussions with respondents in order to obtain more in-depth information about causes and consequences of private transfers and other coping mechanisms.

A basic insight that emerges from this work is that the canonical model of crowding out – whereby public transfers are exogenously bestowed like manna from heaven – needs to be rethought. The next generation of models of interactions between the public and private sectors should pay more attention to the subtle realities of how public transfers are allocated. How, for instance, interest groups must organize in order to elbow their way into the public trough. Amelina, Chirbuca and Knack find that the Romanian poor are disadvantaged on many margins. They tend to be shut off from sources of formal private transfers such as clubs and associations. They tend to have a low level of trust in neighbors, strangers, and institutions, and in contrast to their richer counterparts they have trouble reaping gains from social capital. Further, the authors find that, in the case of Romania, private familial transfers are of little help, since the poorest give about as much as they get, so that private transfers affect their economic position very little.

We hope that similar survey instruments and analyses will be implemented for other countries, and that the entrenched dichotomous view of public versus private transfers in the crowding out literature will be replaced with a more nuanced approach that recognizes a continuous spectrum of social safety nets that are not necessarily so easily
pigeonholed. For instance, the Becker (1974) model demonstrates how endogenously determined private transfers respond to exogenous changes in public transfers. Yet it is just as easy to imagine that one might want to analyze a world in which public transfers are determined endogenously by private, grassroots networks that are partly familial, partly neighborhood-like and partly related to civic organizations. More cohesive private networks could be more adept at steering public benefits their way – “crowding in,” rather than crowding out.

3.2. Demographic and other variables in empirical studies of private transfers

There can be little doubt that the specter of crowding out has been one of the largest – if not the largest – galvanizing force motivating empirical work on private transfers. Hence researchers have devoted considerable attention to both the logic and evidence associated with income effects and private transfers. But it is equally obvious that other variables – such as demographic influences like age and gender – are also important determinants of private transfers.

One thing that distinguishes age effects from income effects is that the latter tend, at least roughly, to be the same from one country to the next, in the sense that the trend is almost always for private transfers to flow from high- to low-income households (e.g., as noted earlier in reference to the study of Cox, Galasso, and Jimenez, 2006). In contrast, age patterns often differ dramatically between countries. For instance, Cox, Galasso, and Jimenez (2006) find that transfers from young to old exceed those going from old to young in both the Latin American countries in their sample (Jamaica, Panama, Peru and Nicaragua) and in Vietnam and Nepal as well, whereas the opposite is true for Russia and Bulgaria. While some of these effects are no doubt attributable to differences in public pensions and crowding out, the inter-country differences in age patterns nonetheless persist even after controlling for household resources.

Why the differences? One researcher who has devoted a large part of his career to pondering this issue is economic demographer Ronald Lee. He, along with anthropologist Hillard Kaplan, have proposed that age patterns in intergenerational transfers could be affected by the stage of economic development, as appreciated against a backdrop of evolutionary considerations. We will consider the latter in more detail in the next section, but for now, suffice it to say that our species has weathered the vicissitudes of the past 150,000 years or so (and, indeed, has flourished) in no small part due to our ingrained proclivity to nurture and support our young. The evolutionary baseline is that older generation members care about, and provide support for, younger relatives more than vice versa. Kaplan’s (1994) review of evidence from traditional (i.e. hunter-gatherer, or pre-agricultural) societies – which are thought to best reflect the evolutionary baseline – indeed supports this view: transfers from old to young predominate. The same pattern tends to hold for advanced industrial and post-industrial societies (Lee, 1997).

What then, are we to make of countries like Vietnam, where transfers from young to old, rather than old to young, tend to predominate? First, note that, in most of the
developing world, social security consists of private old-age support from adult children. But probing more deeply beneath this proximate influence, Lee (1997) advances an intriguing hypothesis concerning agriculture; namely, support of elder farmers can indirectly redound to the benefit of young children. How? Consider, as emphasized by Rosenzweig and Wolpin (1985), that idiosyncratic farm characteristics might exercise a heavy influence on agricultural productivity, lending primacy to the role of intergenerationally transmitted, farm-specific knowledge. Intergenerational transfers from adult children to their elderly parents can benefit grandchildren and their forebears if they serve to perpetuate the valuable farm-specific human capital embodied in the elderly. There are, by now, a sufficient number of LSMS surveys from a diverse enough set of countries to test this hypothesis.

Unlike age patterns, which vary by country, patterns by gender do not: private transfers tend to be targeted to female-headed households. For instance, in each of the 11 countries studied by Cox, Galasso, and Jimenez (2006), female-headed households were more likely to receive private transfers than male-headed households. Further, nearly all single-country studies of private transfers, be they developing or advanced economies, uncover this pattern: e.g., Lucas and Stark (1985) for Botswana; Kaufmann and Lindauer (1986) for El Salvador; Cox, Hansen, and Jimenez (2004) for the Philippines; Guiso and Jappelli (1991) for Italy; and Cox (1987) for United States.

One obvious potential explanation for the pattern has to do with migration, with wives receiving remittances from husbands temporarily absent from home. But Cox, Galasso, and Jimenez (2006) find that the pattern holds up even if households with temporary migrants are removed from the samples. Another explanation is sex differentials in life expectancy, with old age support disproportionately targeted to widows. But again, the pattern holds up even controlling for age.

A different, and perhaps complementary, explanation advanced by Cox (1987) has to do with the exchange motivation for private transfers. There is abundant evidence from sociology and social psychology that women are more heavily involved in the provision of inter-familial services (e.g., caring for extended family members) that are predicted, under the exchange hypothesis, to be compensated for by inter-household transfers.

As with gender, several other of the covariates typically entered into the standard empirical transfer function are subject to multiple interpretations. Take education, for instance. It is correlated with lifetime resources. It may be correlated with past transfers, and hence be picking up the strength of parental altruism. It also might be proxying the recipient’s ability to reciprocate transfers they receive. Interpretations can differ with respect to hypothesized sign for the partial correlation of education and private transfers: for instance, the first story would predict a negative sign for educational attainment, the second and third predict a positive sign.

Even in a simpler world in which the latter two considerations were wiped away, the hypothesized sign of education need not be pinned down so simply. For instance, imagine a model in which private transfers are used to alleviate liquidity constraints, as in Cox (1990). Further, suppose in a regression of transfer receipts on education, that current income is being controlled for, and imagine that education, then, is picking up the
permanent income of the potential recipient. With current income constant, more education implies higher permanent income and hence higher desired consumption. With current income constant then, more education implies a bigger gap between desired consumption and current resources. If private transfers alleviate liquidity constraints (and hence are used to fill this gap) predicted transfers should rise with education. On the other hand, however, if liquidity constraints were not important, so that private transfers were used to equalize, say, lifetime earning capacity, then education would be expected to enter the transfer function with a negative sign.

Indeed, the education effects produced in the empirical literature reflect these cross currents; some studies produce positive education effects, others produce negative ones, and usually there is little attempt to explicate the exact rationale for education’s role in the transfer function. The same is true for other “controls” that are typically included in empirical studies of inter-household transfers, such as household size, number and ages of children, ethnicity, and so forth.\(^{16}\)

Indeed, there exists a kind of double standard in the transfers literature with respect to the relationship between theory and empirics. Usually there is a painstaking discussion of the logic of income effects, often stemming from concerns about crowding out and a desire to understand underlying motivations for private transfers. Accordingly, the ensuing empirical work rests on a foundation that facilitates the interpretation of income effects. In sharp contrast, however, demographic and other variables are often merely entered as controls, and frequently they are given short shrift in the discussion – either described in an ad hoc manner or sometimes the results are suppressed altogether.

Yet these other influences are at least as important as income for explaining variation in private transfers, and a major piece of unfinished business in the literature – something that we return to in the last section – is subjecting these influences to the same exacting theoretical scrutiny that has been directed toward income effects. Before venturing into those uncharted waters, however, we complete our survey of inter-household relationships by discussing the remaining major sub-discipline in the field – inter-household risk-sharing.

3.3. Risk sharing

As a segue into our discussion of the risk sharing literature, we begin by noting a couple of additional findings from the private transfers literature not yet discussed. There is abundant evidence (perhaps not surprisingly) that private transfers appear responsive to adverse shocks experienced by households. For instance, in each of the countries studied by Cox, Galasso, and Jimenez (2006) samples of households with someone sick enough to have to miss work or limit daily activities received transfers in greater numbers than

\(^{16}\) The use of controls such as number and age composition of children, for instance, can be clearly problematic for attempting to understand familial resource allocation via inter-household transfers, since fertility and household composition are themselves endogenous and likely to be correlated with unobservables in estimations of private transfers.
healthy households. Fafchamps and Lund (2003) found, for a sample of Filipino households, that gifts and informal loans were highly responsive to certain shocks to income and expenditures, such as the unemployment of the household head or spouse, or the onset of funeral expenses. These findings are consistent with a central premise of the so-called “risk sharing” literature, which is that households provide mutual insurance to one another in order to smooth their consumption in the face of risk.

But in some key aspects, the approach of the risk sharing literature is different from that of the private transfers literature. Most importantly, the variable that gets placed front and center in this literature – both conceptually and empirically – is not private transfers but consumption. The key question – first posed by Robert Townsend in his seminal 1994 paper – is this: as a rural household in a small village, facing risks of drought, pestilence, illness, and the like, what is it that determines my consumption in a given year? If I get sick or lose my job or my crops, will my family and I go hungry? Or might the appropriate “consuming entity” extend beyond the walls of my home? Suppose that households in my village act as an extended family, pooling resources and consuming, as it were, from a common village pot. Such pooling would serve to lessen the sensitivity of my own consumption to fluctuations in my income; what would matter is the resources of the entire village.

To a first approximation, the risk-sharing hypothesis can be thought of as a cross-sectional analogue of the life-cycle/permanent income (LC/PIH) hypothesis. (The analogy is not exact since there are time subscripts in the risk sharing model, but it is pedagogically useful nonetheless.) Hall’s (1978) pioneering test of the LC/PIH hinged in part upon the irrelevance of current income for consumption once permanent income had been controlled for. Townsend’s test parallels that of Hall’s, in that with risk sharing, an individual household’s current income should play only a minor role in determining its consumption.

Another attractive aspect of the risk sharing approach (and here is where we leave the cross section analogy behind) is that, by focusing on consumption smoothing, the theoretical and empirical models can come to grips with all of the means by which households might cope with shocks in order to smooth consumption: not just through private transfer networks, but by using capital and credit markets, availing themselves of public transfers, private insurance, adjustments in the timing of discretionary durable purchases, and just about any other conceivable means of controlling consumption flows. Households, for instance, might adjust their labor supply in order to smooth consumption (Kochar, 1999; Rose, 2001). Rather than seeking to parse out the individual mechanisms for smoothing, risk sharing studies focus on the bottom line: if consumption got smoothed, some combination of factors must have been at work to make it happen.17

17 Because kin-based and other inter-household transfers are but one element of the array of means by which households smooth consumption in the risk sharing framework, our treatment of this sub-literature in this Chapter is not as detailed as that of private transfers in earlier sections. For more detailed surveys, we refer readers to a variety of excellent papers, including Alderman and Paxson (1994), Morduch (1995, 1999), Townsend (1995), Fafchamps (1999), Dercon (2002) and Attanasio and Rios Rull (2003).
In addition, the cost of collecting consumption data in developing countries – relative to advanced economies – is low. Accordingly, there exist many data sets amenable for testing the predictions of the risk sharing hypothesis, and, since the appearance of Townsend’s (1994) paper, the literature has burgeoned considerably.

A consensus has emerged from this literature that parallels the literature on inter-household transfers, which is that, while there is evidence that households can mitigate the effects of shocks to their economic well-being via risk sharing, such insurance is only partial, not complete. An early generation of tests, beginning with Townsend’s (1994) own classic paper, followed by others such as Ravallion and Chaudhuri (1997), Townsend (1995) and many others, reported the extent to which the household’s propensity to consume depended upon its own income after controlling for community resources. (To return to an earlier analogy: this parallels the “excess sensitivity” tests of the LC/PIH in the macro consumption literature.) The estimated propensities are never zero, though some estimates are surprisingly low. (Again, the heterogeneity in estimates mirrors what has been found in the inter-household transfers literature for transfer derivatives: a range of estimates, with pronounced neutralization of income fluctuations the exception rather than the norm.)

A second generation of risk sharing tests, based upon variances rather than means, reinforces these earlier findings. Inspired by an early suggestion of Deaton and Paxson (1994), Attanasio (2002) and others have pioneered tests of risk sharing based upon comparisons of the variance of consumption versus the variance of income. The intuition for the test is rather straightforward: if households can avail themselves of various mechanisms for smoothing consumption, the variance of consumption should be less than that of income. An example of such a test is Attanasio and Szekely (2004), who find that Mexican households have difficulty insuring against wage shocks, and that negative shocks can cause cutbacks in purchases of goods related to human capital investment, thus possibly jeopardizing a household’s future earning capacity.

The concept of income variances enters the risk sharing literature’s perspective on crowding out, which is a bit different from that of the private transfers literature. The argument, as explicated by Attanasio and Rios Rull (2000), goes like this: public transfers reduce income variability, and the good news is that this can allow households to do a better job of consumption smoothing. A possible downside, however, is that, with incomes thus smoothed, households may no longer have sufficient incentive to band with others to form private risk sharing arrangements. Attanasio and Rios Rull (2000) go on to find supporting evidence: benefits from Mexico’s Progresa program do indeed appear to partially crowd out private transfers. Dercon and Krishnan (2003) find similar results for publicly provided food aid in rural Ethiopia.

The risk sharing literature has matured rapidly, both conceptually and empirically, in the sense that it is now accepted that problems such as commitment and enforceability should be incorporated as standard fixtures in the modeling landscape. For instance, Foster and Rosenzweig (2001) propose a creative way of inferring problems of commitment (as well as the advantages of familial altruism) by examining how past transfers affect current giving. The idea is that, all else equal (and with little altruism to impel
continued generosity) having a long history of giving transfers should reduce a household’s propensity to make an additional transfer. The authors indeed find evidence to this effect, and they also find that problems of imperfect commitment do not appear so pressing in the presence of familial altruism. Ligon, Thomas, and Worrall (2001) explicitly incorporate limited commitment into a model of household risk sharing, and find that this model empirically outperforms the simpler risk sharing model originally proposed by Townsend.

Another practical problem with inter-household risk sharing is that some risks will obviously be much easier to insure than others, and there is emerging evidence to support this idea. For instance, Gertler and Gruber (2002) find that Indonesian risk sharing networks can cope rather effectively with costs of ordinary illnesses, but not with severe ones that impair long-term health. Likewise, Fafchamps and Lund (2003) find that certain risks appear more insurable than others.

Townsend’s original insight was to focus on the village as the unit of aggregation for the pooling of risk. This idea has much to recommend it, seeing how, for example, propinquity may be necessary for forming the bonds of trust needed to seal an implicit risk sharing agreement. People who live in close proximity have more opportunity to get to know one another and also have an easier time monitoring one another in order to police and mitigate moral hazard problems. But proximity entails problems too, not least of which is covariate risk. As Rosenzweig and Stark (1989) emphasize, one way to mitigate the problem of correlated risks is to forge links with far flung friends and relatives.

Recent work has attempted to move beyond the village-based risk sharing format. For instance, Grimard (1997) emphasizes how ethnic ties might play a role in the formation of risk sharing networks in Cote d’Ivoire; likewise, Munshi and Rosenzweig (2006) focus on the role of castes for risk sharing in India. Murgai et al. (2002) examine the role of transactions costs in determining the (endogenous) size and localization of the risk sharing group. Suri (2005) considers a multi-level approach whereby households share risk within villages, which in turn can pool their fortunes amongst other villages within districts. This is an important issue to cultivate in future research on risk sharing. Too often, the literature takes a rather casual approach to the potential size of the risk sharing group, and does not pay enough attention to problems of constraints on group size. We return to this issue in the next section.

4. Moving forward in an evolutionary direction

So much for what we have learned in recent years: What gaps in the economic literature on extended families and kinship networks would we like to see filled? And how might researchers go about filling them? The considerable progress that economists have made in the past 15 years has largely been concentrated in improving our understanding of forces that are central to the discipline: income effects, price effects, shared budget constraints, and the like. True, we have learned about other things along
the way – demographic, cultural and geographic effects, for instance – but such influences are usually cast as adjuncts to economic issues or conceptualized in an *ad hoc*, purely descriptive manner.

Consider a typical regression from the empirical literature on private transfers: On the left-hand side, a measure of private transfer receipts; on the right-hand side, the household’s income and/or wealth, including – data permitting – resources of potential donors. Education variables would likely be included, perhaps as indicators of permanent income. This canonical regression would likely also contain demographic variables, such as female headship, age, and marital status, number of children, household size, and the like. But as our discussion earlier in this chapter makes clear, while economists can draw upon a considerable body of theory for interpreting income-related variables, they have little guidance for thinking about the demographic variables – age and gender, in particular – which often are just included as “controls.”

We suspect that this is because economists lack a cogent framework for thinking about age or sex-related influences *per se*. We contend that well-established insights from evolutionary biology can complement economic approaches to produce a more powerful model for understanding a fuller array of influences on family networks. Further, we argue that the approach is straightforward, easy to learn and parsimonious. It ties together diverse facets of behavior with just a few basic premises. And it is likely to look appealingly familiar to economists, entailing, as it does, maximization subject to constraints.

Before getting to details, and by way of motivation, we preview a sampling of predictions and insights that an evolutionary approach can provide:

- Mothers are expected to be more altruistic toward children than fathers. Relatedly, it may be highly useful to distinguish between maternal versus paternal grandmothers as sources of private inter-household transfers.
- Investigations of whether sons versus daughters tend to be favored with familial transfers might well pay attention to the parental family’s wealth ranking in the relevant marriage market (and whether that market veers at least somewhat toward polygyny).
- Attention to biological basics helps to explain age patterns in the provision of assistance between extended family members and predicts that altruism of parents toward children should be stronger than that of children toward parents.
- Evolutionary theory predicts conflicts of interest can arise within families: children, for instance, will tend to want more than parents are willing to give to them, and interests of relatives from the husband’s versus the wife’s side of the family will not necessarily coincide.
- The theory advances clear-cut hypotheses regarding nepotistic behavior and transfers contingent upon biological relatedness. Stepchildren, adopted children and foster children, for example, are expected to gain less from familial transfer networks than biological children.

The evolutionary approach unifies diverse phenomena in kinship networks, such as: fetal development, health of the elderly, conflict between siblings over what constitutes
fair treatment by parents, conflict between husbands and wives concerning quantity versus quality of children, conflict between in-laws, and the use of gifts versus loans in risk sharing networks (gifts are predicted to go to kin, loans to non-kin). To see how the approach works, we begin with its foundation, what is commonly referred to as “Hamilton’s Rule.”

4.1. Hamilton’s rule: The evolutionary cornerstone of familial altruism

Which should we expect to be stronger, a mother’s altruism toward her young son, or an adult son’s altruism toward his elderly mother? Might we expect mothers to be more solicitous toward their children than fathers? How about maternal versus paternal grandmothers? How much might we expect sons to be treated differently than daughters, purely because of their sex? Should we expect siblings to be natural allies, or rivals who vie for scarce parental resources? Or perhaps we should expect they might be a bit of each?

Note that these questions are concerned with demographic effects per se: mothers versus fathers, sons versus daughters, old versus young. What is now known as Hamilton’s rule was proposed by biologist William D. Hamilton over 40 years ago (Hamilton, 1964), and related theories, primarily those of Robert Trivers and his collaborators, form the basis for understanding the evolutionary impetus for familial altruism. These theories make clear predictions about demographic influences within kinship networks. In addition to being falsifiable, the logic of Hamilton’s rule is exceedingly compact, and its implications are sometimes far from intuitively obvious. As such, the biologically based approach shares strengths in common with the best of economic theory; it is parsimonious, counter-intuitive and falsifiable.

4.1.1. What is Hamilton’s rule?

Hamilton’s rule is a simple but far-reaching system of logic that contains the biological foundations for familial altruism. Acts of altruism, such as the honeybee’s suicidal defense of its hive, seemed to contradict the Darwinian dictum of “survive and reproduce,” the evolution-based objective of all living things including humans. Hamilton solved the problem of altruism by focusing on the gene rather than the individual. The honeybee’s altruistic act could be optimal from the “gene’s eye view”: though the genetic code of the individual altruist is lost, even more of that code, no longer imperiled, gets to prevail within the bee’s rescued relatives. Richard Dawkins (1976) calls organisms ‘survival machines,’ disposable devices for protecting and disseminating long-lived genetic code.

Imagine a hypothetical construct called a “helping gene,” something that impels the individual to make sacrifices to help others. Hamilton asked: “What sort of helping genes might spread in the population?” Hamilton contended that altruistic behavior among kin was governed by the implicit calculation based upon expected costs and benefits measured in terms of inclusive fitness. Fitness represents reproductive success,
usually cast as the expected number of progeny; inclusive fitness is one’s own fitness plus the weighted sum of relatives’ fitness, where the weights are the probabilities that a relative and I share the same helping gene.

Consider an illustration adapted from Cox (2007): My brother and I are soldiers, and an enemy sniper has him in his sights. Suppose I could either cry out a warning to save him, thus drawing the sniper’s deadly fire toward myself, or remain silent. If I call out, I lose my own helping gene with certainty. What do I gain? Since my brother is a genetic relative, there is a 50–50 chance we share the same helping gene (that is, the 0.25 probability that we both inherit the gene from our mother plus the 0.25 probability we inherit it from our father). Thus, in expected value terms, the benefit from calling out is half the value of my helping gene. From the “gene’s eye view,” then, the optimal policy is to remain silent. But suppose there were three brothers in the sniper’s sights rather than one. Now there are net gains to being altruistic, since 1.5 helping genes (in expected value) are saved, a net gain of one half. Thus, a gene that impelled an organism to issue a risky, even suicidal, warning cry could spread if such cries saved enough close relatives.

In more general terms, Hamilton’s rule can be expressed as follows. Denote the cost of the altruistic act to the donor by C, and benefits of the act to the recipients by B. Let r denote the coefficient of relatedness, i.e., the chances that donor and recipient share the identical helping gene. Hamilton’s rule stipulates that the donor provides help if

$$rB > C.$$

In our example, B and C are counted in terms of lives saved. Return to the warfare example and imagine that I am, and will continue to be, childless, but that my brother is expected to have three children (for simplicity let us stop at the second generation). My brother’s fitness is his helping gene plus the expected value of his helping gene in the children, or $1 + 0.5 + 0.5 + 0.5$. The value of rB is therefore 1.25, so Hamilton’s rule predicts that my inclusive fitness would be enhanced by sacrificing my life in order to save my brother. This example illustrates how Hamilton solved Darwin’s dilemma of altruistic behavior among social insects, which are often sterile.

Sterility occurs in humans as well, with menopause, and therein lies a prediction related to Hamilton’s rule: its onset should, all else equal, spur increased altruistic behavior toward kin. Menopause is but one illustration of the built-in age-specific imbalances in altruistic sentiments that emanate from Hamilton’s rule. Human relatedness is reflexive (r between grandmother and granddaughter is 0.25 no matter whose point of view is taken) but fitness need not be, as in the case where the granddaughter – but not the grandmother – is fertile. Family elders, therefore, would in general be expected to be more altruistic toward their younger kin than vice versa. Note that we have said nothing about income endowments; Hamilton’s rule pertains to the sentiments embodied in the grandmother’s utility function, not the money in her bank account. Another

18 Another common (and mathematically equivalent) way to express relatedness is by the fraction of genes shared by dint of having the same parents (i.e., common descent). (See Cox, 2007.)
4.2. Hamilton’s rule and conflict in the family

Hamilton’s rule predicts several avenues for familial conflict: between parents and offspring, among siblings, between husbands and wives, and among in-laws. It is perhaps in this respect that the evolutionary approach differs most dramatically from the economic approach; until very recently, economists focused almost exclusively on Pareto Optimal solutions to economic problems in the family. For instance, Becker’s (1974) “Rotten Kid” theorem implied that altruistic transfers from parent to child would obviate conflict, since no child would choose to bite the hand that feeds him. Likewise, and as we saw in earlier sections, bargaining and collective models retain Pareto Optimal solutions.

In contrast, Trivers’ (1974) model of parent-offspring conflict delineates conditions where a child might harm his mother, his siblings, or even himself to increase his share of parental transfers. Imagine a mother with two sons, Andy and Ben. Her relatedness to each is one-half, so if they are otherwise identical she would treat each equally according to Hamilton’s rule. But neither son would be inclined to go along with this. While Andy’s relatedness to Ben is one-half, his relatedness to himself is higher, namely, unity. Hence from Andy’s perspective equal treatment does not go far enough; he would prefer to get more than Ben, and vice versa.

4.2.1. Sibling rivalry – A case study

Consider the following East African case study of sibling rivalry and parent-offspring conflict from the 1950s. P.H. Gulliver (1961) studied the transition to cash farming among a group of subsistence farmers in Northern Tanzania (then Tanganyika). Traditional systems of inheritance were founded upon land abundance; a man’s land typically was inherited by distant kin such as cousins or half brothers. Sons preferred to acquire land outside their natal village. But once land became scarce and valuable, inheritance laws quickly changed, so that land now passed from a father to his children (an outcome, by the way, predicted by Hamilton’s rule, since parental altruism is stronger for sons than for more distant kin). The new system gave the eldest brother authority to allocate land between himself and among his younger siblings, with predictable results:

At first, and as land grew scarcer and more valuable, the eldest brother took the larger portion of the dead father’s land, leaving his juniors to seek elsewhere as

19 Nor do such considerations of inclusive fitness always skew investments toward the youngest. A mother’s altruism toward an unhealthy infant with slim chances of surviving to reproduce are predicted to be less than her altruism toward a healthy and mature child.
they could. But younger brothers quickly came to demand more nearly equal shares and a share for each, and in this they were supported by the local Nyakyusa courts (Gulliver, p. 18).

Consistent with Trivers’ hypothesis, the increase in land values fostered not only sibling rivalry but father-son conflict. Again, in Gulliver’s words:

A second locus of conflict is in the father-son relationship. Whereas formerly a son was not dependent on his father for agricultural or residential land (for he easily acquired land in the new village of his contemporaries), now he is primarily dependent on his father . . . (Sons) allege that a father expects too much work and subordination and gives too small shares in the joint enterprise. Fathers allege the exact reverse (Gulliver, p. 19).

4.3. Conflict between fathers and mothers

The male-female difference in reproductive biology – the enormous costs that reproduction imposes on a woman relative to a man, for instance – implies that mothers and fathers would disagree about quality/quantity trade-offs in fertility: mothers favor quality; fathers, quantity. Males and females differ in the size and number of sex cells (gametes) they produce. Indeed gamete size is what defines males and females. The lifetime production of the male gamete (sperm) numbers in the billions, while that of the female gamete (eggs) numbers in the hundreds. More importantly, female mammals invest more in offspring than do males, and this is especially true for humans. Owing to our outsized brains, childbirth is far more traumatic for women than for other female primates. While a man can at least in principle “go forth and multiply,” a woman can only “go forth and add” – and with great cost.

Trivers (1972) argued that this sex imbalance in minimal requirements for parental investment creates a backdrop for mother–father conflict over child quality versus quantity. Total reproductive effort consists of investing in existing children and producing new ones – including effort to attract new mates. Men benefit relatively more than women from the latter reproductive pursuit.

Further, except in unusual circumstances, a mother is always certain her offspring is a genetic relative, whereas a putative father could in principle harbor doubt. A straightforward adjustment of Hamilton’s rule to reflect this uncertainty implies a lower value of paternal relative to maternal altruism.20

While prominent in biological analyses, these basic facts frequently get glossed over in economic models. While some early models of the economics of the family, notably Becker’s (1981) analyses of the sexual division of labor, paid explicit attention to biological differences between men and women, later economic models of household

20 For further discussion of theory and evidence pertaining to paternity uncertainty, see, e.g., Hrdy (1981) and Cox (2003).
behavior usually ascribed nothing special to being a father versus a mother; each may have well been “persons 1 and 2,” and indeed are often referred to as such.

Such agnosticism about sex differences needlessly ties economists’ hands, for each of these “biological basics” – sex differences in investment costs and paternity uncertainty – imply that mothers would be expected to behave more altruistically toward children than fathers. Had these off-the-shelf “bio-foundations” been incorporated in a vintage model of household allocation, such a framework would have turned out to have tremendous predictive power. Indeed, maternal favoritism has been found in dozens of studies of intra-household allocation (for instance see surveys by Strauss and Thomas, 1995 and Haddad, Hoddinott, and Alderman, 1997). What is rather astonishing is how the results are usually presented; there is generally little discussion about how it is always the mother who invests more. Instead, and in keeping with the standard “person 1–person 2” approach, economists merely note that the “preferences” of the spouses appear to “differ,” and that the “unitary” model of household decision-making can be rejected. From a biological perspective, such verbiage is unduly circuitous, to say the least. But more important, economists could generate useful extensions of their approach to household bargaining by paying attention to biological traits, which relate the strength of mother-father conflict to things like cultural practices connected with paternity confidence, marriage and mating markets and a host of other variables pertinent to biology.

4.4. Marriage and ‘mate guarding’

A biologically based view of marriage differs markedly from most economics-based analyses, which emphasize gains from trade between husbands and wives, utility gains from pair bonding, the sharing of public goods, and the like. In contrast, and in raw form, the biological view is that marriage is a system of “mate guarding” arranged by mutually suspicious spouses (especially husbands) and their relatives, to monitor the fidelity of each spouse. (For a discussion of this view for various species, see, e.g., Birkhead, 2000.) Since paternity is uncertain, husbands have an incentive to monitor their wives’ activities to insure that they are investing in children that are indeed biological relatives. In addition, since ovulation is hidden, husbands (so the theory goes) have to be more vigilant than, say, male chimpanzees, who are only interested in guarding females when they are in estrus, that is, the days when they display outward signs of being fertile.

Wives have an incentive to monitor husbands too, but for a different reason. Husbands who seek outside mating opportunities divert resources from their wife’s offspring, toward individuals who are not her genetic relatives. Further, the fitness costs associated with a spouse’s infidelity are generally different for husbands versus wives. From the husband’s perspective, cuckoldry, i.e., raising an unrelated child thought to be a genetic relative, entails potentially enormous fitness costs. From the wife’s perspective, a husband’s philandering need not entail such an extreme downside in terms of fitness costs. Hence, the infamous “double standard” pertaining to sexual fidelity that prevails in nearly all cultures, where female infidelity is punished more heavily and
more strenuously guarded against than male infidelity. Such mate guarding takes the form of onerous restrictions in women’s rights, sequestering, chaperoning, regulations on women’s market work, and so forth. In extreme form, such guarding can be injurious to health and well-being or even life threatening. For instance, female circumcision can be interpreted as an attempt to discourage female infidelity by reducing capacity for sexual pleasure, and domestic violence a weapon wielded by husbands for controlling the social lives of their spouses. Thus mate guarding is implicated in extensive, worldwide public health problems. The World Health Organization (2000), for example, estimates that between 100 and 140 million women and girls in 28 countries have experienced some form of genital mutilation, including clitoridectomy (removal of the entire clitoris) and infibulation (sewing the vagina shut in order to insure virginity).

Evolutionary psychologists argue that jealousy is an emotion intimately related to mate guarding, and sex differences in mate guarding concerns have been found to play out with respect to corresponding differences in how jealousy is experienced. Buss et al. (1992) find that male jealousy tends to be triggered by the prospect of sexual infidelity on the part of their mate, whereas female jealousy tends to be ignited by emotional infidelity, that is, the prospect that their mate is cultivating serious romantic involvement elsewhere. This accords with sex differences in the costs of infidelity: while the worst-case scenario for the male is cuckoldry, the worst-case scenario for the female is desertion.

4.5. In-laws and support for grandchildren

Seldom do in-laws get mentioned in economic models of marital matching and gains from trade. Nor is there much concern about whether such matches occur ceremoniously or not. In contrast, a mate guarding perspective places in-laws and ceremony front and center. The public nature of marriage helps enlist extended kin, friends, and gossip networks of all description in the task of enforcing fidelity of the spouses. In all cultures, marriage is an exceedingly public event; elopement is generally quite rare.

One prediction about in-law altruism that emanates from considerations of mate guarding and paternity uncertainty is that relatives from the husband’s side of the family might be expected to be more prone to condition their gifts and help upon their ability to monitor their child’s spouse. Maternal grandmothers, for instance, are always certain that their grandchildren are biologically related to them, whereas paternal grandmothers might not be. So financial transfers from a maternal grandmother might be less sensitive to her grandchild’s geographic distance than financial transfers from a paternal grandmother, since paternal grandmothers who live close by would presumably face lower costs of monitoring their daughters-in-law.

Duflo (2003) finds empirical evidence consistent with differential altruism between maternal and paternal grandmothers in the context of an interesting natural experiment, South African pension reform. After the end of apartheid, in an attempt to address racial imbalances in pensions, the South African government increased cash transfers to the elderly (Case and Deaton, 1998). Many South African households are multigenerational,
with grandparents and grandchildren living under one roof. Duflo examined the impact of pension changes on nutrition indicators for grandchildren (weight for height and height for age) and found positive and significant effects in but one case – where grandchildren co-resided with their maternal grandmother.

Related evidence in a different context was found by Sear et al. (2002), who examined the relationship between the availability of kin and child mortality in rural Gambia. As in Duflo (2003), the maternal grandmother was the only grandparent whose presence mattered for child outcomes. In contrast (and despite the villages being patrilocal) loss of kin from the father’s side of the family had no significant effect on child mortality.

By no means do these case studies comprise any sort of consensus evidence for maternal versus paternal grandmotherly largesse. Indeed, a recent study by Hamoudi and Thomas (2005) shows that, once living arrangements are treated as endogenous, it turns out that, for one component of consumption (girls’ clothing), the altruism of grandfathers toward granddaughters appears stronger than that of grandmothers.

What the Duflo and Hamoudi–Thomas papers do illustrate are the both the key strengths of the economic approach and the potential for further progress by integration of biological considerations. First, with respect to the strength of the economic approach: each paper gives exacting attention to the distinction between correlation and causality and lays out clearly the assumptions necessary to identify the effects of pension income. Further, Duflo in particular derives rather ingenious methods for dealing with various endogeneity problems (for instance, by focusing on child height-for-weight outcomes within households and comparing how siblings born before pension reform fared relative to their post-pension-reform counterparts).

Second, with respect to how evolutionary biology can contribute: neither Duflo nor Hamoudi–Thomas provide detailed discussion of why splitting grandparents along maternal/paternal lines might matter in and of itself. Indeed, the former paper incorporates such a split and the latter does not. Nor does economics provide much guidance for specification, since what matters most is pension eligibility. It is here that considerations of evolutionary biology can pick up where economics leaves off, by providing exacting logic as to why and how a maternal-paternal split among grandparents could matter for the specification.

4.6. The Trivers–Willard hypothesis

Duflo’s (2003) study of grandparental transfers and South African pension reform reveals another intriguing demographic pattern, which is that grandmotherly largesse is directed at granddaughters not grandsons. Such a finding is arguably consistent with another biology-based theory of family behavior, the so-called Trivers–Willard hypothesis, named after Trivers and his mathematician co-author, Dan Willard, from a 1973 paper of theirs (Trivers and Willard, 1973).

The Trivers–Willard hypothesis has to do with how parents might favor the production of, and investment in, sons versus daughters, and how such favoritism might vary with parental socioeconomic status. Consider a marriage market that is somewhat
polygynous (perhaps socially sanctioned, perhaps only de facto), with high-status males having opportunities for garnering multiple mates and low-status ones at risk of not mating at all. Extremely poor parents concerned with their reproductive legacy would favor daughters, on the grounds that sons might not produce any grandchildren, while even poor daughters could reproduce (either in a monogamous or polygynous marriage) and perhaps advance their status via marriage as well. Conversely, the sons of extremely rich parents have the wherewithal to attract multiple spouses and thus produce several grandchildren.

The Trivers–Willard hypothesis was formulated for analyzing sex ratios at birth, but the approach can also be used to analyze boy–girl disparities in parental investments in children, as noted, for example, by Edlund (1999).

An illustration of how low-status families might bias investments toward daughters is provided in Cronk’s (1989) anthropological study of East African pastoralists, the Mukugodo of Kenya. The Mukugodo occupy the very lowest rung of the status hierarchy in the regional – and somewhat polygynous – marriage market, and they intermarry with their richer neighbors. Cronk finds a pronounced pro-female bias in sex ratios at birth and among children aged 0–4; among the latter, daughters outnumber sons 3 to 2. Moreover, daughters have higher reproductive success than sons; nearly all daughters reproduce, but many sons do not, and completed fertility is 25 percent higher for daughters compared to sons. Further, Cronk finds evidence of pro-daughter biased parental investments. Among children aged 0–4 taken to a nearby Catholic health clinic, Mukugodo daughters are over-represented relative to their proportion in the population (58 percent of the population but 64 percent of the visits). Among the non-Mukugodo children, the figures are reversed (daughters make up 49 percent of the population but only 45 percent of the visits to the clinic).

Similar patterns were found in a study of Hungarian Gypsies (Bereczkei and Dunbar, 1997) who, like the Mukugodo, had opportunities to intermarry with wealthier neighbors (the Hungarian population). Gypsies were found to invest more heavily in daughters than sons compared to their Hungarian counterparts. Bereczkei and Dunbar found pro-daughter bias in several indicators of production and investment: sex ratio at birth, frequency of abortion, duration of breastfeeding and years of education.

What about bias toward sons among the relatively wealthy? A case study from nineteenth-century northern India reported in Hrdy (1999) represents a possible example:

Selective elimination of daughters first attracted attention in the West during the years of the British Raj. Nineteenth-century travelers visiting Rajasthan and Uttar Pradesh in northern India remarked on the rarity of seeing girls among any of the elite clans. It was assumed that as part of purdah the daughters of these proud descendants of warrior-kings were kept in seclusion. “I have been nearly four years in India and never beheld any women but those in attendance as servants in European families, the low caste wives of petty shopkeepers and (dancing) women,” wrote Fanny Parks in her 1850 travelogue through northern India. It did not occur to the observer that there were no daughters... Among the most elite clans such as
Hrdy prefaces this account with an explanation along the lines of the Trivers–Willard hypothesis:

In patriarchal social systems, a wealthy son finds himself in control of productive resources that women need. He will be in a position to attract multiple mates. In a stratified society such as Rajasthan’s, families seeking social advancement compete among themselves to amass a dowry large enough to secure a place for their daughter in an elite household. This brings a prestigious alliance for parents along with the prospect of well-endowed grandsons. Should calamity strike, it is the only prospect for descendants surviving at all. Thus does son preference among elites lead to hypergamy, the custom by which women marry men of higher status. At the top of the hierarchy, however, hypergamy dooms daughters. There is no higher-ranking family for them to marry into (p. 325).

We hasten to add that there are several other (arguably dominant) factors that can lead to favoritism of sons over daughters (or vice versa), which have little to do with Trivers–Willard effects. For instance, support from adult children is the predominant form of old-age support in the developing world (Nugent, 1985) and for a farm family, investment in sons may have higher returns than investment in daughters (see e.g. Cain, 1977).21

Further, the Trivers–Willard hypothesis is not uncontroversial. For instance, Freese and Powell (1999) find little support for Trivers–Willard effects in data on parental investments in adolescents in the United States. In contrast, Norberg (2004) found a slight but precisely measured difference in sex ratios at birth favoring the production of boys when the mother was living with a spouse or partner at the time of conception or birth. This is consistent with the Trivers–Willard hypothesis since, all else equal, fathers’ presence would be correlated with resources for investment in the child.

One possible reason for disparities across studies could be that sample sizes in typical household surveys are too small to shed much light on possible Trivers–Willard effects. Recently, Almond and Edlund (2006) examined US natality data for 1983–2001 for 48 million births. Like Norberg, they find evidence consistent with the Trivers–Willard hypothesis. For instance, they find that married mothers (as well as better educated mothers) are more likely to give birth to male offspring.

Another conceivable reason for mixed results with United States data is that the Trivers–Willard hypothesis is one of extremes, derived within the context of at least

21 A recent crosscurrent in the sex ratio debate is the possible role of Hepatitis B in affecting sex ratios at birth (Oster, 2005), a controversial hypothesis that has been challenged by Das Gupta (2005).
a somewhat polygynous marriage market. Accordingly, it is not clear that a developed economy is the most appropriate testing ground. There is definitely more potential for exploring further the possibility of Trivers–Willard effects in developing countries.

Sex ratio at birth is but one component of the Trivers–Willard hypothesis, since parents can and do make decisions about how much to invest in children once they are born. (Almond and Edlund, for example, found that, in addition to contributing to the chances of bearing a son, a mother’s being married reduced the risk of infant mortality for male children.) Parents in some places nowadays can also practice sex-specific abortion, and infanticide and neglect were always available as a means to control the sex composition of families. The famous problem of the “100 million missing women,” actively publicized by Amartya Sen, is evidence of the leeway that parents have for influencing sex ratios. While much of this bias is no doubt caused by preference for the old-age support that sons provide in patrilineal, agrarian societies, Sen (2001) notes that sex preference is not always biased toward boys. Pondering the significant variation in sex ratios and sex-specific child mortality across individual Indian regions and states, he also expresses puzzlement that high income is not necessarily associated with absence of anti-female bias. Yet such patterns suggest it might be worthwhile considering the Trivers–Willard hypothesis, though Sen makes no mention of it.

Nor does Esther Duflo mention Trivers–Willard in her (2003) study discussed above, though her finding of favoritism toward girls might be interpreted in light of such effects. From the perspective of poor families, the ending of Apartheid, and possibilities for decreased social stratification could open up new opportunities for female hypergamy. In one of the few papers in economics that explicitly refers to Trivers–Willard effects, Edlund (1999) illuminates the possibility for pernicious dynamics – via household bargaining effects – that would serve to perpetuate the low status of women. Assuming, as much evidence indicates, that a wife’s power within marriage is influenced by parental wealth, female hypergamy implies lower bargaining power of wives relative to their husbands. If such imbalance stifles a mother’s capacity to provision daughters (as, for example, the empirical work of Thomas (1994) appears to indicate) then Trivers–Willard effects could contribute to intergenerational hysteresis in the lowered status of women.

The economic development literature has a long tradition of investigating the treatment of sons versus daughters in the family (for examples of careful and thorough reviews, see Behrman, 1997 and Strauss and Thomas, 1995). But there is little work on how such favoritism could interact with the constellation of variables pertinent to the Trivers–Willard hypothesis, including familial socioeconomic status within the marriage market, the inherent polygynousness of that market, and sex-specific patterns in exogamy and inheritance of status. The interplay between Trivers–Willard effects and household bargaining as explicated by Edlund (1999) would have obvious implications for extended family and kin networks, since they would affect, among other things, the relative incomes of the kin from the wives’ versus husbands’ side of the family and the scarcity of marriageable daughters relative to sons.
4.7. Evolutionary perspectives on interactions with non-kin, boundedness of human groups and risk sharing

As we have seen, when it comes to the analysis of *kin* relations, economics and evolutionary biology have often been like two ships passing in the night. Cross-fertilization of ideas has been lacking, to the detriment of the economics of the family especially, and we hope that this chapter will help speed the bridging of the two disciplines. In contrast, however, when it comes to analysis of *non-kin* relations there has already been profitable trade between the two fields, with biologists borrowing useful concepts from economics and *vice versa*. (For a recent review of this lively and productive literature, see Fehr and Fischbacher, 2003.)

Analyses of problems of cooperation between non-kin (or between, say, firms or nations) was already well underway in economics and political science before biologists broached the subject. Economists had been using insights from game theory – the prisoner’s dilemma in particular – long before biologist Robert Trivers published his seminal work on reciprocal altruism in 1971. Trivers posed a question similar to Hamilton’s (1964) query, but with a twist: “Can a gene that impels someone to assist a non-relative prevail under natural selection?” The answer, at least in principle, is of course a qualified “yes,” as long as some form of fitness-enhancing payback is prompted by such altruistic acts. Ten years later, the interdisciplinary efforts of a biologist (Hamilton, again) and a political scientist (Robert Axelrod) produced a landmark study of the problem of cooperation among non-relatives using a repeated prisoner’s dilemma framework (*Axelrod and Hamilton, 1981*).

Biologist John Maynard Smith borrowed insights from game theory starting in the early 1970s (e.g., *Maynard Smith, 1974*), added to the theory, then economists, starting with Daniel Friedman (1991), began borrowing and adding to Maynard Smith’s framework. The result of this cross-fertilization, evolutionary game theory, has of course become a vibrant discipline all its own.

Early analyses of prisoner’s dilemma games concentrated on individual choice of strategies, where homogeneous players decided whether to cooperate with one another or not. An insight added by Maynard Smith was to imagine heterogeneous, fixed “types,” say, “hawks” and “doves,” who were born to defect or cooperate, respectively. Consider random pairings, where two doves enjoy the fruits of cooperation, two hawks muddle through with mutual defection, and hawk–dove pairings generate plunder for hawks and crumbs for doves. Imagine too that hawks and doves leave descendants who tend to inherit their traits, and that the richer the parent, the more offspring it leaves. Since defection is the dominant strategy in a prisoner’s dilemma, hawks would eventually drive doves to extinction. But suppose there were some marking that honestly signaled whether someone was a hawk or dove. No sane dove would pair off with a hawk; they would seek out each other to enjoy the cooperative life. That would leave hawks the relatively meager rewards of mutual defection and eventually it would be hawks who would be driven extinct, leaving a society of doves living in cooperative peace.
Imagine, though, that one day a mutant appears who shatters the idyll: a hawk disguised as a dove. He and his descendants would go marauding through the population of doves until no true dove were left – only hawks in dove’s clothing, living the Hobbesian life of mutual defection. An alternative to this scenario, however, might be that, though every bird looks the same, for a price one could get a glimpse into its soul to verify whether it was truly hawk or dove. Such conditions could support a heterogeneous population of hawks and doves, with equilibrium proportions determined by the costs versus benefits of screening. To mix metaphors, this cat-and-mouse game involving signaling, screening, and concerns about cheating provided fertile ground for the work of evolutionary psychologists Leda Cosmides and John Tooby, who argue that human mental modules have evolved with the express purpose of detecting cheaters and signaling cooperativeness (Cosmides and Tooby, 1992). Cosmides and Tooby argue that the ubiquity of prisoners’ dilemma problems and the high stakes associated with success or failure with them, would have led, over the many thousands of years of human evolution, to dedicated, and finely honed, cognitive tools designed for navigating the potentially treacherous waters of social life. Their “mental module” approach can be likened to the dedicated language acquisition modules in the brains of toddlers. Linguist and evolutionary psychologist Steven Pinker argues that language is just too important an adaptation to be relegated to learning from scratch; hard-wired language acquisition modules that facilitate the absorption of complex grammatical and syntactical processes give individuals an advantage for surviving and reproducing (Pinker, 1994).

Likewise, Cosmides and Tooby argue that similar mental modules exist for solving problems of social exchange, such as the detection of cheaters. Perhaps their best known experiment involves the effects of content on the ability to comprehend the nuances of logical problems. Their idea is that people are a lot smarter at solving problems expressed in the very concrete and pressing terms of detecting cheaters than they are at solving logically identical problems that are expressed without the cheater-detection backdrop. These results indicate, in their view, that though human minds are somewhat poorly equipped to handle abstract problems concerning necessary and sufficient conditions, they are in contrast naturally adept at solving problems concerning the social contract.

Indeed, some evolutionary psychologists have advanced the hypothesis that possessing the cognitive wherewithal to succeed in the practice of social intrigue conferred distinct adaptive advantages and that intelligence and language are human adaptations for social exchange. This proposition is known as the “Machiavellian intelligence” hypothesis (Humphrey, 1988). Why might these ideas from evolutionary psychology matter for networks of mutual support? A key reason has to do with the subtleties of “cheater detection” modules. Presumably, since these adaptations are likely to have evolved in small groups, cues obtained from face-to-face contact are likely to have played a significant role in social exchange among non-kin. Casual acquaintance “A” proposes a cooperative venture with non-relative “B.” “B” listens and watches intently for cues connected with dishonesty: sweating, failure to maintain eye contact, dryness of mouth and hoarseness of voice, excessive blinking, etc. If detection of cheating matters,
the formation of far-flung support networks with non-kin is predicted to be far dicier than the formation of support networks with kin (since the dictates of Hamilton’s rule can at least partially facilitate the latter). Accordingly, we would expect that geographic propinquity (and perhaps middlemen) would play a more significant role in non-kin support networks. We would also expect to see a higher prevalence of non-kin support (relative to kin support) in places with higher population densities.

4.7.1. Human groups for risk sharing and production

A key function of cooperation among rural households is the sharing of idiosyncratic risks that can befall families. The response of private transfers to income fluctuations and calamities caused by things like droughts and pestilence has occupied much of the literature dealing with support networks. How large might we expect the typical risk-sharing network to be? Might there be limits on the size of networks? How might opportunities for increased division of labor in production affect risk-sharing networks? We argue below that evolutionary considerations can provide fresh insight into comparatively neglected problems in economic analyses of group behavior.

Much of the existing empirical literature on risk-sharing in economics pays little attention to the size of informal risk-sharing groups. For example, these groups have been alternately envisioned as: the extended family (Altonji, Hayashi, and Kotlikoff, 1992); the village (Townsend, 1994); subsets of states in the United States (Asdrubali, Sorensen, and Yosha, 1996); the entire United States (Mace, 1991); even the whole world (Lewis, 1996). The lack of attention to group size in this literature stems from its emphasis on the complete set of possible means by which households deal with risk – not just the use of informal groups, but borrowing, drawing from savings, sales of durable goods, and so forth. The tide is beginning to change, however, and economists are beginning to give increased attention to inherent limits in network and group size (see, for example, Fafchamps and Quisumbing, this volume). Still, economists can avail themselves of useful evolutionary insights on the limitations of network size. We begin by recognizing that many activities besides risk-sharing – including work, leisure, defense and governance – take place within groups. Second, we start with a motivating example of a natural experiment that illustrates how limitations on group size can conceivably constrain production.

One problem in determining the effectiveness of group size in production is that all we can usually observe are endogenously determined, equilibrium values. Lin’s (1990) study of collectivization in China and agricultural output is less prone to this problem because group size was, to a large extent, exogenously determined. After the communist takeover in 1949, small, family-run farms were liberated from their corrupt landlords and family farm work was consolidated in various forms of cooperatives, where labor and other inputs were pooled among households. Cooperative schemes ran the gamut from the “mutual aid team” (4 or 5 households), the “elementary cooperative” (20–30 households), to the “advanced cooperative” (150–200 households). Collectives were
allowed to coalesce voluntarily. Later on we will discuss the potential evolutionary sign-
nificance of the maximum values 150–200.

Lin reports that the early stages of collectivization, from 1952 through 1958, saw a
substantial gain – over 25 percent – in agricultural output. Further consolidation was
mandated by the Great Leap Forward, initiated in 1958, and the average commune size
ballooned to 5000 households, and agricultural output collapsed. The sharp reduction in
productivity is consistent with a binding network constraint, in which the cohesiveness
of the production group is destroyed.²² On the risk-sharing front as well, too large a
group can thwart the objective of harmonious consumption from a common pot. Witness
the failed Utopian societies of the nineteenth century, or the spate of defunct hippie
communes from the 1960s. Usually, effective risk-sharing requires a small group. For
example, Lomnitz’s ethnography of reciprocal networks in a Mexico City shantytown
indicates a maximum size of 6 households, with an average size of 3.65 families per
find that mutual insurance, primarily provided in the form of informal loans between
households, takes place not at the village level, but instead among much smaller groups
of friends and relatives. The costs of maintaining group cohesiveness is likely to increase
with the size of the group. In the realm of both risk-sharing and teamwork, groups can
be beset with the problem of free-riding. What can be done to mitigate the problem?
There are basically three options:

1. the group can try to screen out those likely to cheat,
2. it can attempt to alter individual preferences to make them less prone to moral
hazard, or
3. the group can invent incentives and systems of monitoring that make cheating
less likely.

Economists have devoted the most attention to the third option. For example, Kimball
(1988) and Coate and Ravallion (1993) investigate trigger strategies that can help keep
reciprocal relationships together. Coate and Ravallion consider an infinite horizon, re-
peated, non-cooperative game in which two individuals attempt to insure one another
from random shocks to income. As discussed in earlier sections of this Chapter, they
emphasize the implementability constraint – a condition that insures that utility from
immediate defection is always less than utility from continued cooperation. The predic-
tion from the Coate and Ravallion model is that mutual aid will only be responsive to
income shortfalls up to a point, since the requirements of extremely large contributions
would violate the implementability constraint. As discussed earlier, private transfers
follow a non-linear relationship with the earnings of the potential recipient. They are at
first responsive to income shortfalls, then flatten out.

²² Lin argues that the unwieldy size of the communes was not the root cause of the output collapse, however.
He points to a rule change implemented during the Great Leap Forward that eradicated previous rights to
withdraw from a commune. Lin argues that this rule change ruined work incentives, and points to evidence
that agricultural productivity did not recover once communes returned to their smaller size but retained their
compulsory membership rules.
Kimball limits his investigation to full, rather than partial, risk-sharing, but considers the possibility of more than just two risk-sharers and the implications of increased group size. The larger the risk-sharing group, the bigger the gains from cooperation and the larger the penalties from defection. But once formed, larger groups are harder to maintain, since defection would be relatively attractive for those with lucky group members, who would otherwise have to share their windfalls with too many others. Fafchamps (1992) presents a detailed treatment of a variety of features of mutual insurance systems in pre-industrial society in a unified framework that emphasizes findings from the theory of repeated games. He and others have also applied game theoretic considerations to incentive problems in work teams. For example, a partnership in which output is split among \(n \) workers would be expected to be beset with free-rider problems, since each worker would reap only one-\(n \)-th of the fruits of his or her efforts. Fafchamps shows how subsistence insurance can generate better incentives than full income pooling. Repeated games can lead to self-enforcing agreements and help overcome the moral hazard problem (Telser, 1980; Radner, 1986). Becker (1992) has argued that the problems of commitment emphasized in game-theoretic approaches to strategic interactions, such as those described above, are exaggerated because they ignore the possibility that habits of commitment and loyalty can be deliberately inculcated.

If we recognize the prospect that risk-sharers and teammates can engage in “bonding,” that is, activity that enhances the functionality and cohesiveness of a small group, then the relationship between group size constraints and functionality becomes more transparent. Rotemberg (1994) pursues the idea that bonding can affect performance in the workplace. He cites evidence from the “Hawthorne experiments,” a classic study in organizational behavior from the 1930s, which investigated worker behavior in Western Electric’s Hawthorne plant. In one group of experiments, increased time for worker socializing was linked to increased productivity. Increased friendliness among workers was cited as the reason for the increased output. If there are costs to cultivating feelings of altruism toward an individual, as envisioned by Mulligan (1997) and Rotemberg, then the costs of developing a cohesive group will increase with its size. Platteau (1991) cites a different example of bonding, in the context of risk-sharing, among the !Kung San, hunter-gatherers who live in the Kalahari. The !Kung San practice hxaro, a system of hunger insurance that is characterized by sharing with far-flung kin, both fictive and real. The initiation of a hxaro relationship is highly ritualized and time-consuming, involving a staggered gift exchange between two persons for a year or longer. The ceremonial gifts are intended to inculcate bonds of friendship. Stack’s (1970) ethnography of low-income Blacks living outside Chicago documents the same principle, called “swapping”: “Since an object is offered with the intent of obligating the receiver over a period of time, two individuals rarely simultaneously exchange things. Little or no premium

23 A countervailing argument is advanced by Kandel and Lazear (1992), however. They argue that peer pressure might be more effective in larger groups, because shirking can potentially arouse the ire of more persons. They do acknowledge though, that after some point increases in group size would undermine the quality of interpersonal relationships and the strength of peer pressure.
is placed upon immediate compensation; time has to pass before a counter-gift or a series of gifts can be repaid. While waiting for repayments, participants in exchange are compelled to trust one another” (p. 41). Similar patterns have been documented in Lomnitz’s (1977) study of networks in a Mexican shantytown and in Mauss’ (1950 (1990)) comparative study of gift giving and exchange.

4.7.2. Group size constraints can create trade-offs between risk-sharing and specialization in production

Carol Stack’s (1970) ethnography documents the demands that risk-sharing networks make on their participants, increasing the costs of participating in other social spheres, such as work life. Resources devoted to the maintenance of ties within the sharing network leave little room for relationships outside of the network, making it difficult for network members to straddle the demands of the network and those of a life outside the network:

Marriage and its accompanying expectations of a home, a job, and a family built around the husband and wife have come to stand for an individual’s desire to break out of poverty. It implies the willingness of an individual to remove himself from the daily obligations of his kin network. People in The Flats recognize that one cannot simultaneously meet kin obligations and the expectations of a spouse (Stack, p. 113).

Horne (1918) and Jevons (1918) discuss the difficulty that family networks posed for Indian industrial development in the early twentieth century. Horne notes that a leading cause of labor scarcity in urban jute mills was the return of workers to their homes to look after their “domestic affairs.” Much more recent analysis of this problem is provided by Munshi and Rosenzweig (2006) who find that the prospect of losing the risk-mitigating services of caste networks can impede migration and mobility.

In a completely different context, a study by Berman (2000) documents the tremendous influence of participation in religious schooling (Yeshiva) among Ultra-Orthodox Jews in Israel. Ultra-Orthodox communities practice mutual insurance to an extreme degree. They also have pathologically low rates of rates of labor force participation of prime-aged males, which is indicative of a trade-off between risk-sharing and production. Berman argues that the poverty is a sacrifice used to insure that those with insufficient commitment to the religious community are screened out, following the logic of the model of religious behavior proposed by Iannaccone (1992). This example highlights the potential trade-off between the size of a production team and the size of a risk-sharing clan.

Considerations of limitations of group size and possible trade-offs between producing and risk-sharing have novel implications for the impact of public income distribution on productivity. The standard argument is that public safety nets are antithetical to productivity, since, for example, income guarantees can sap incentives to work. In contrast, the considerations of group size above suggest that these safety nets, by obviating the
need to form risk-sharing networks, can allow people to concentrate their limited group management resources on the problem of team production. If the production technology exhibits increasing returns in the number of workers, and public safety nets make it possible to field larger work teams, production and incomes rise. Group size limitations could play a significant role in the transition from agriculture to manufacturing. The number of workers per establishment is an order of magnitude larger in manufacturing than in either agriculture or services. Seen in this light, public safety nets might help facilitate industrialization. For example, Mokyr (1985) conjectures that the early existence of public safety nets in England may have contributed to its industrialization:

Indeed, it could be maintained that the Poor Laws, despite their obvious flaws (in particular their non-uniformity), may have had some overall positive effects on the Industrial Revolution. A comparison of Ireland, which had no formal system of poor relief prior to 1838, bears this out... The social safety net provided by the Poor Laws allowed English individuals to take risks that would have been prudent in Ireland where starvation was still very much a possibility. In societies without such laws, self-insurance in the form of large families and liquid assets were widely held (p. 14).

The approach also provides an explanation for the policy focus on state-provided redistribution during the process of rapid transition from agriculture to manufacturing, as that which occurred in the Soviet Union during the middle part of the twentieth century. The state usurps the duties of the clan, so that limited capacity for group formation can be concentrated within the realm of the work team.

4.7.3. Group size constraints and group lending

Group lending schemes, such as the Grameen Bank, could be modeled in a similar manner to that of risk-sharing. The key idea is that the emotional and intellectual resources necessary to sustain a viable group loan compete with other activities, such as production, which also require these resources. One puzzle in the literature is the nearly exclusive targeting of group lending to women. Typical explanations are usually concerned with the incidence of poverty and liquidity constraints, but these indicators cannot explain the pronounced gender divide in group lending that is usually observed. For example, 94 percent of Grameen Bank borrowers are women (Pitt and Khandker, 1998). Group lending started in rural Bangladesh, where female work for wages is rare and women tend to be secluded in accordance with Islamic law. Such seclusion could contribute to the success of group lending since in such isolated settings constraints on network size are unlikely to be binding.

5. Conclusion

A survey is supposed to take stock of a literature and point out fruitful future directions. All along in writing this Chapter we have assumed (perhaps pretended is a better
word) that our reader is a novice in the sub-discipline – a graduate student, perhaps, or someone who has just switched into the field. What would we recommend to such a person in order to make the most of his or her research efforts? We will now go out on a limb and attempt to give some advice to such readers, with the proviso that all research prospects are at least somewhat risky, and that our advice may not be suitable for all and accordingly that other opinions should be sought out.

With those caveats in mind, we think that research on income effects in inter-household transfers is beginning to hit sharply diminishing returns. The specter of complete crowding out, which energized the empirical literature during the past few decades, appears to be fading as a policy concern and an intellectual problem. Not that private behavioral responses of transfer networks can be safely ignored by policymakers; far from it. It is just that the marginal value of an additional case study of income effects from a standard data set, such as the LSMS, is likely to be relatively low.

Instead, the current focus on income effects should give way to an intensified scrutiny of all of the other variables that researchers typically consider – but rarely think very hard about – in studies of inter-household transfers, particularly the effects of age, gender and kin-relationship. For instance, we need to understand better why it is that in some countries intergenerational transfers are used primarily for old-age support, whereas in others, they are targeted primarily to younger households. The question matters, for example, for reasons of economic growth: the more resources are directed toward the young, in the form of human capital investments, the better are the prospects for growth.

We also need to have a better understanding of gender differences in kinship relations and support. Too often, economic models are gender blind, populated with generic parents and children and “spouses 1 and 2,” rather than husbands, wives, fathers, mothers, sons and daughters. This modeling choice is in part a legacy of the nature of economics, which has little to say about gender in and of itself – such as the nature of motherhood versus fatherhood. But as we argue in Section 4, evolutionary biology does have a lot to say about these things, and that combining insights from that discipline, in order to refine our notions of familial utility functions, could open new doors for understanding demographic influences in inter-household transfers. Likewise, evolutionary biology has a lot to say about human cooperation among non-kin, and researchers can now avail themselves of an exceedingly well-developed literature that has enormous potential for shedding new light on problems of mutual assistance and cooperation that extends beyond strictly familial ties.

References

